National Repository of Grey Literature 69 records found  1 - 10nextend  jump to record: Search took 0.00 seconds. 
Optimization of device for measurement field emission from GaN nanocrystals surface
Horák, Stanislav ; Kromka, Alexander (referee) ; Mach, Jindřich (advisor)
This diploma thesis deals with the design and optimization of the device for measurement of field emission from gallium nitride (GaN) nanocrystals surface. The first part of the thesis is the topic review, which contains the introduction to the problematics of field emissio focused on GaN. Then there were designed, constructed and optimized two versions of the device for the measurement of field emission. Through the optimization phase, the first successful test has been performed with zinc oxide (ZnO) nanowires. Simultaneously GaN nanocrystals were fabricated on the silicon substrate Si(111) with 2 nm of silicon dioxide SiO2 and also on the copper foil covered by graphene by molecular beam epitaxy (MBE). In the last chapter, there are presented the results of the measurement for emission of GaN nanocrystals. Finally, this study is comparing results with the current research in the area of field emission, which displays the improved characteristics for field emission of GaN nanocrystals on the copper foil covered by graphene.
The preparation of graphene layers modified by Ga atoms and characterisation of their electrical properties
Piastek, Jakub ; Kromka, Alexander (referee) ; Mach, Jindřich (advisor)
This master's thesis deals with the study of electric properties of graphene layers covered by Ga atoms in UHV conditions. The substrates were prepared by using laser litography and the graphene layer was prepared by using chemical vapor deposition (CVD). Dependence of Dirac point location on gallium atoms deposition time and influence of electrical properties of graphene on hydrogen atoms deposition time were studied. Experimental results and their evaluation are discussed.
Technological challenges in the fabrication of MoS.sub.2./sub./diamond heterostructures
Varga, Marián ; Sojková, M. ; Hrdá, J. ; Hutar, P. ; Parsa Saeb, S. ; Vanko, G. ; Pribusova Slusna, L. ; Ondič, Lukáš ; Fait, Jan ; Kromka, Alexander ; Hulman, M.
Nowadays, 2D materials are one of the most studied classes of materials. In addition to the most famous graphene, progress has been achieved in studying and using fundamental properties of transition metal dichalcogenides (TMD). Complementary, diamond as a representative of 3D materials has gained a reputation as an extremely versatile material due to its extraordinary combination of physical/chemical/electrical/optical properties. Besides these particular forms of 2D and 3D materials, their heterostructures have become very attractive due to new phenomena and functions (bandgap engineering, enhanced charge transport, optical interaction, etc.). However, individual technological procedures are still minimally investigated and described. Here, we will demonstrate a proof-of-concept for the preparation of MoS2/diamond heterostructures, where two different strategies were employed: a) growth of MoS2 layers on diamond films, and b) growth of diamond films on Si/MoS2 substrates.
Enhanced growth rate of diamond films at low temperature in focused microwave plasma system
Babčenko, Oleg ; Bydžovská, Irena ; Fait, Jan ; Shagieva, Ekaterina ; Ondič, Lukáš ; Kromka, Alexander
The low temperature (< 500 °C) diamond film deposition on fused silica in two different focused microwave plasma systems, i.e. a multimode clamshell cavity (MCC) and a rotational ellipsoid cavity (REC) reactor, was investigated. During the experiments, the methane to hydrogen ratio, in the hydrogen-rich process gas mixture, varied from 1 % to 15 % for MCC and from 1 % to 9 % for REC. The grown films were analyzed by scanning electron microscopy and Raman shift measurements. The outcomes of the study and enhanced diamond growth at low temperatures is advantageous for overcoating of fused silica as well as thermally sensitive substrates, e.g. optical elements, photonic crystals, sensors, etc.
Chemical deposition of diamond thin films from gas vapors
Kromka, Alexander
The preparation of diamond layers and their (nano-) structures requires the optimization of several technological steps. In the first step of “diamond technology” it is important to activate the surface of the non-diamond substrate by a suitable process known as nucleation or nucleation. The second key step is the growth of the diamond layer itself by chemical vapor deposition (CVD) under low pressures (10 ÷ 10,000 Pa) and temperatures in the range of 250 ÷ 1000 °C, and from a gas mixture of methane and hydrogen commonly used in a hot filament or microwave plasma CVD systems. In this paper, both technological steps, nucleation and growth, are discussed in light of current trends and experimental activities taking place in the laboratories of the Institute of Physics of the Academy of Sciences of the Czech Republic (FZÚ).
Vascular and osseous cells in polymer structures for tissue engineering
Filová, Elena ; Bačáková, Lucie (advisor) ; Maxová, Hana (referee) ; Motlík, Jan (referee) ; Kromka, Alexander (referee)
Artificial vascular and bone prostheses are engineered as bioinert, not allowing cell attachment and growth. Our aim was to prepare materials based on natural and synthetic polymers that could modify the surface or create the bulk material of prostheses, and test their bioactivity in vitro. We prepared fibrin assemblies of various thicknesses and evaluated the adhesion, growth and differentiation of endothelial cells (EC) on these layers. We observed increased cell spreading on twodimensional fibrin assemblies and improved cell growth and maturation on thick fibrin gels. Fibrin coated with collagen I, or fibronectin, increased the adhesion area and the proliferation activity of vascular smooth muscle cells (VSMC). Synthetic polymers were based on an inert block copolymer of poly(DL-lactide) and polyethylene oxide (PDLLA-b-PEO) in which 5% or 20% of the PEO chains were grafted with Gly-Arg-Gly-Asp-Ser-Gly oligopeptide, a ligand for cell adhesion receptors. Grafting oligopeptide peptide to the cell non-adhesive copolymer restored adhesion and growth of VSMC, even in a serum-free medium. Synthetic polymers could therefore serve as artificial extracellular matrix analogues for vascular tissue repair and regeneration. Our study with human osteoblast-like MG 63 cells cultured in poly(lactic-co-glycolic acid)...
Growth and properties of diamond films prepared on 4-inch substrates by cavity plasma systems
Babčenko, Oleg ; Potocký, Štěpán ; Aubrechtová Dragounová, Kateřina ; Szabó, Ondrej ; Bergonzo, P. ; Rezek, B. ; Kromka, Alexander
We compare two microwave (2.45 GHz) plasma systems with ellipsoidal and multimode clamshell cavity for diamond synthesis by chemical vapor deposition. We use H2/CH4/CO2 gas mixture for diamond film deposition on Si <100> wafers. Both systems are capable of high pressure (up to 20 kPa) operation and high growth rates (several µm/h). We compare the cavity systems from the point of diamond quality (Raman shift measurement), substrate size (2” versus 4”) and grown film homogeneity together with surface morphology (SEM), deposition rate and parasitic doping levels (photoluminescence).
Microscopic study of multifunctional drug molecule adhesion to electronic biosensors coated with diamond and gold nanoparticles
Finsterle, T. ; Pilarčíková, I. ; Bláhová, I.A. ; Potocký, Štěpán ; Kromka, Alexander ; Ukraintsev, Egor ; Nepovimová, E. ; Musílek, K. ; Kuča, K. ; Rezek, B.
The easy and fast detection of drug content and concentration levels is demanded in biological research as well as in clinical practice. Here we study on microscopic level how nanodiamonds and gold nanoparticles interact with a multifunctional drug molecule directly on a biosensor surface. The sensors are made of interdigitated Au electrodes coated by 5 nm hydrogenated or oxidized nanodiamonds and further combined with Au colloidal nanoparticles (size 20 nm) providing nanoscale composite (spacing 100 nm). Atomic force microscopy is employed to measure local tip-surface adhesion forces and surface topography. AFM adhesion maps show that the drug binds to all types of nanoparticles and the adhesion is also significantly influenced by the substrates on which the nanoparticles are deposited. Role of local AFM tip interaction with nanostructured surface is also discussed.\n
Histology and micro-CT study of diamond-coated metal bone implants in rabbit femurs
Potocký, Štěpán ; Ižák, Tibor ; Dragounová, Kateřina ; Kromka, Alexander ; Rezek, Bohuslav ; Mandys, V. ; Bartoš, M. ; Bačáková, Lucie ; Sedmera, David
A conformal coating of a thin diamond layer on three-dimensional metal bone implants was shown directly on stainless steel and TiAl6V4 cortical screw implant using ultrasonic and composite polymer pretreatment method. The best conformation coverage was achieved in the case of the WO3 interlayer for both stainless steel and TiAl6V4 screws. The process of osteointegration of the screw implants into rabbit femurs is evidenced by the formation of a bone edge via desmogenous ossification around the screws in less than six months after implantation. A detailed evaluation of the tissue reaction around the implanted screws shows good biocompatibility of diamond-coated metal bone implants.
Optimization of device for measurement field emission from GaN nanocrystals surface
Horák, Stanislav ; Kromka, Alexander (referee) ; Mach, Jindřich (advisor)
This diploma thesis deals with the design and optimization of the device for measurement of field emission from gallium nitride (GaN) nanocrystals surface. The first part of the thesis is the topic review, which contains the introduction to the problematics of field emissio focused on GaN. Then there were designed, constructed and optimized two versions of the device for the measurement of field emission. Through the optimization phase, the first successful test has been performed with zinc oxide (ZnO) nanowires. Simultaneously GaN nanocrystals were fabricated on the silicon substrate Si(111) with 2 nm of silicon dioxide SiO2 and also on the copper foil covered by graphene by molecular beam epitaxy (MBE). In the last chapter, there are presented the results of the measurement for emission of GaN nanocrystals. Finally, this study is comparing results with the current research in the area of field emission, which displays the improved characteristics for field emission of GaN nanocrystals on the copper foil covered by graphene.

National Repository of Grey Literature : 69 records found   1 - 10nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.