|
Effect of spin coating on electrical properties of MXene films deposited from non-aqueous solvents
Gutsul, O. ; Szabó, Ondrej ; Pfeifer, R. ; Sasitharan, K. ; Jackivová, Rajisa ; Slobodyan, V. ; Kromka, Alexander ; Rezek, B.
We investigated the effect of spin coating parameters on the electrical properties of Ti3C2 MXene thin films deposited from non-aqueous suspensions in N,N-dimethyl formamide (DMF) and N-methyl-2-pyrrolidone (NMP) on gold interdigitated electrodes (IDE). The electrical properties of DMF-MXenes and NMP-MXenes films are characterized by impedance spectroscopy (4 Hz - 8 MHz at 1 V) using gold IDE with 25 µm gap. The electrical conductivity of MXene films decreases with increasing spin coating speed from 300 to 900 rpm. The series resistance (Rs) and double layer capacitance remain similar (Cdl). In all cases, MXenes deposited from DMF have five orders of magnitude higher electrical conductivity (lower Rct) than MXene films deposited from NMP. It is correlated with the thin film morphology obtained by scanning electron microscopy (SEM). These findings can be useful for possible application of MXenes as charge transport layers in hybrid photovoltaic devices.
|
|
Gas sensors based on diamond heterostructures for air quality monitoring
Kočí, Michal ; Szabó, Ondrej ; Izsák, T. ; Sojková, M. ; Godzierz, M. ; Wróbel, P. ; Husák, M. ; Kromka, Alexander
Currently, great emphasis is placed on air quality and the presence of pollutants. Attention is therefore focused on new gas-sensing materials enabling detection even at low (up to room) temperatures with sufficient response and short reaction time. Here, we investigate the suitability of H-NCD films and their heterostructures with MoS2, GO, rGO, SH-GO, or Au NPs for gas sensing applications. Electrical properties are measured for oxidizing gas NO2, reducing gas NH3, and chemical vapor of ethanol, and at temperatures varied from room temperature to 125 °C. In contrast to the individual forms of employed materials with limited response to the exposed gases, the HNCD heterostructures revealed better sensing properties. In particular, the Au NPs/H-NCD heterostructures revealed a higher response at 125 °C in contrast to H-NCD, MoS2/H-NCD had quite good response even at room temperature and GO/H-NCD revealed high sensitivity to chemical vapor, which further improved for the SH-GO/HNCD.
|
| |