National Repository of Grey Literature 33 records found  previous11 - 20nextend  jump to record: Search took 0.00 seconds. 
Role of oxidative stress in cardioprotection induced by exercise.
Kyclerová, Eva ; Nováková, Olga (advisor) ; Kašparová, Dita (referee)
Cardiovascular diseases are the major cause of death in developed countries. It is known that heart muscle can activates endogenous protective pathways in response to stress, thereby increasing resistance against ischemia/reperfusion (I/R) injury. Protective pathways involve many signaling molecules and reactive oxygen species (ROS) play an important role among them. ROS are applied in cardioprotection induced by various stimuli, such as chronic hypoxia, preconditioning and also physical exercise. It has been demonstrated that regular physical exercise naturally leads to the positive adaptation to protect heart against injury. The balance between production of ROS and their removal by antioxidant protection system is important for the right functioning of the heart. The overproduction of ROS occurs in pathological conditions such as an I/R leading to oxidative stress contributing to subsequent damage of heart. ROS may contribute not only to the injury but in the mild concentrations, resulting for example from physical exercise, ROS are important signaling molecules involved in series of events leading to cardioprotection. Slightly increased oxidative stress protects the heart by increasing the capacity of antioxidant system, stimulates angiogenesis, activates mitochondrial biogenesis and physiological...
Study of the unique signaling pathway of Ser/Thr protein kinase StkP and phosphatase PhpP in Streptococcus pneumoniae
Keil, Jan ; Ulrych, Aleš (advisor) ; Bobková, Šárka (referee)
The major human pathogen Streptococcus pneumoniae is a unique model for the study of eukaryotic-type serine/threonine protein kinases and its cognate phosphatases in bacteria, since it encodes only a single signaling pair composed of the StkP protein kinase and PhpP phosphatase. This signaling pair plays a role in several cellular processes, mainly in cell wall biosynthesis and cell division. StkP and PhpP proteins with a pleiotropic effect appear to regulate a complex signaling cascade by phosphorylation of many substrates. However, only a few have been characterized so far. Using MS analysis, we have identified about 90 phosphopeptides that are potential substrates for the StkP kinase and PhpP phosphatase. This diploma thesis is focused on the characterization of the new substrate Spr0929 and its role in pneumococcal physiology. One of the objectives was to investigate cell morphology of strains carrying deletion of the spr0929 gene in different genetic backgrounds. It turned out that the role of Spr0929 in cell morphology is strain specific. The growth curves of strains with this deletion were compared to that of the wild type in various physiological conditions as well. As Spr0929 contains a nucleoid-associated domain called NdpA, determination of its cell localization was an important...
Effect of small DNA viruses on function of plasmacytoid dendritic cells
Janovec, Václav ; Hirsch, Ivan (advisor) ; Růžek, Daniel (referee) ; Filipp, Dominik (referee)
Plasmacytoid dendritic cells (pDC) are a highly specialized subset of immune cells that sense viral nucleic acids by endosomal toll-like receptors 7 and 9 (TLR7/9). Activation of TLR7/9 leads to the production of type I interferons (IFN-I). Moreover, pDC contribute to the antiviral response by presenting viral antigens to T lymphocytes and link innate and adaptive immunity. pDC need to be properly regulated in order to limit excessive production of IFN-I that is associated with autoimmune diseases. Therefore, pDC possess a battery of regulatory receptors (RR) that limit TLR7/9-mediated cytokine production. This thesis focuses on the mechanism of RR-mediated inhibition of IFN-I production in pDC and explores interactions between pDC and two enveloped viruses, that possess the ability to hijack RR in pDC: hepatitis B virus (HBV) and human immunodeficiency virus (HIV). We showed, that MEK-ERK signaling pathway plays an active role in RR-mediated inhibition of IFN-I in pDC. Our results indicate that in line with other studies of our group, pharmacological targeting of MEK1/2-ERK signaling could be a strategy to re-establish immunogenic activity of pDC. Then, we investigated whether antiretroviral therapy (ART) in a cohort of 21 treatment-naive chronic HIV-infected patients has restored the number and...
The Development of Animations Supporting Teaching of Biochemistry at High Schools - Signal Transduction
Chaloupková, Denisa ; Teplá, Milada (advisor) ; Martínek, Václav (referee)
This bachelor thesis focuses on the processing of educational materials (animation and educational text) to support the teaching of cell signalling. The created materials are primarily intended for students of higher grammar schools and chemically oriented secondary schools and they are aimed at teaching the subject of chemistry and biology. The theoretical part of this bachelor thesis includes the definition of basic concepts of visualization, visual or animation. Subsequently, it deals in more detail with animations, their advantages and disadvantages in teaching and it also deals with the effectiveness of the use of animations in teaching and the variables that affect this effectiveness. This chapter also presents the criteria that should be fulfilled when creating an educational animation and subsequent inclusion in the teaching process. Furthermore, in this part, there is an analysis of curricular documents performed, which is the Framework Education Programme and the School Education Programme related to the topic of cell signaling. The practical part is devoted to the analysis of already created videos freely available on the internet, which deal with the topic of cell signaling. Subsequently, it presents teaching materials that were created by the author of this work. The first teaching...
Effect of small DNA viruses on regulation of interferon production
Hofman, Tomáš ; Hirsch, Ivan (advisor) ; Elleder, Daniel (referee)
Plasmacytoid dendritic cells (pDC) represent innate immune cells capable to detect viruses in their endosomal environment via Toll-like receptors (TLRs). Viral nuclear acid recognition leads to the massive production of type I interferon (IFN I) and induction of the antiviral state in uninfected cells. Crosslinking of the surface regulatory receptors, such as BDCA-2, with monoclonal antibodies or with some viruses leads to the activation of MEK1/2- ERK signaling pathway and inhibition of IFN I production in pDC. In this study, the role of MEK1/2 kinase has been highlighted. Its inhibition reversed the inhibitory effect of BDCA-2 crosslinking and its direct activation with PMA led to the inhibition of IFN-α production. Yet an unclear role of pDC in sensing of BK polyomavirus virus (BKV) responsible for kidney transplant rejection was investigated as a major topic of this thesis. Experiments with the pDC cell line Gen2.2 and HRPTEC primary cell line showed that pDCs were not able to detect BKV particles, however, exposure of activated Gen2.2 cells to BKV inoculum dramatically upregulated production of IFN-α. Most importantly, coculture of Gen2.2 cells with BKV- infected HRPTEC cells resulted in IFN-α and TNF-α production, which was prevented by Bafilomycin. These results suggest that BKV-infected...
Role of RACK1 in translation regulation during stress conditions
Chvalová, Věra ; Groušl, Tomáš (advisor) ; Převorovský, Martin (referee)
RACK1 (Receptor for activated C kinase 1) is an evolutionary conserved protein which has essential role in most studied eukaryotic organisms, except for yeast. Although RACK1 was originally described as a binding partner of protein kinase C, later studies re- vealed its significant role in other cellular signalizations such as MAPK, Src or FAK. Thanks to this, RACK1 participates in the regulation of key cellular processes including migration, apoptosis or translation. As a binding partner of a small ribosomal subunit, RACK1 contributes to transla- tion regulation by integrating signals from different cellular pathways and several transla- tional components such as PKC and eIF6. Moreover, RACK1 has a role in translation regu- lation during stress. Under stress conditions there is a global reduction of translation, in- creased expression of specific mRNAs important for cellular stress response and formation of cytosolic foci called stress granules (SGs). SGs play an important role in protection of mRNAs and translation components against degradation. SGs also function in prevention of apoptosis. RACK1 has been identified as one of many components of SGs and its localization into SGs leads to inhibition of RACK1-mediated pro-apoptotic pathways. Aim of this diploma thesis was to elucidate the role of...
Recombinant preparation of DNA binding domain of transcription factor TEAD4
Zákopčaník, Marek ; Novák, Petr (advisor) ; Šulc, Miroslav (referee)
6 Abstract Transcription factors play a key role in the management of cell growth and differ- entiation and their deregulation is associated with many cancers. TEAD proteins utilise highly conserved DNA binding domain to recognise specific DNA sequences. This domain could facilitate new drug design and development. The goal of this master thesis includes recombinant preparation of DNA binding domain of transcriptional factor TEAD4 extended by a part of an unstruc- tured variable sequence, which connects this domain with transactivation domain. Purification steps include affinity chromatography followed by size exclusion chro- matography. The characterization of produced protein was performed by mass spectrometry and finally, native gel electrophoresis was used to prove the ability of the produced protein to bind DNA. During purification steps, a fragmentation from C-terminus was observed. Based on analysis of the mass spectra, three most represented forms of produced protein were described all of which were fragmented. The most abundant form (55%) consisted of amino acids 30-131 from TEAD4 protein. Second most abun- dant form (18%) consisted of amino acids 30-144 and the third form consisted of amino acids 30-81. Native gel electrophoresis verified the ability to bind DNA, the efficiency was however lower...
Effect of HBV protein HBx on activation of MEK1/2 signaling and inhibition of type I IFN in hepatoma cell line Huh7
Berehovska, Olena ; Hirsch, Ivan (advisor) ; Zábranský, Aleš (referee)
Hepatitis B virus (HBV) infection is one of the major causes of chronic and cancerous liver disease. Elimination of HBV from chronically infected patients by recombinant interferon α (IFNα) monotherapy shows that the mechanisms of the innate immunity play an important role in suppressing viral infection. However, the mechanisms of recognition of the HBV genome and its escape from the mechanisms of natural immunity are still little known. One of the principal factors enabling the virus to escape from cellular restriction mechanisms is the HBx viral protein. HBx is a 154 amino acid pleiotropic multifunctional protein affecting transcription, signal transduction, cell cycle, protein degradation, apoptosis, and chromosomal stability in the host cell. Previous results from our laboratory have shown that activation of the MEK1/2-ERK signaling pathway in plasmacytoid dendritic cells leads to inhibition of IFNα production. The aim of my work was to determine whether HBx activates the MEK1/2-ERK pathway and thus inhibits IFN type I production also in hepatocytes. For this purpose, I monitored HBx production in the Huh7 hepatoma cell line by transfecting the bicistronic plasmid pHBx- IRES-EGFP and Western blotting. Using the same method, I monitored activation of the MEK1/2-ERK signaling pathway by ERK...
Recombinant preparation of DNA binding domain of transcription factor TEAD1
Kúdelová, Veronika ; Novák, Petr (advisor) ; Dračínská, Helena (referee)
TEAD proteins belong to a significant family of transcription factors that contribute to the regulation of organism growth and cell differentiation during its development by activating the expression of a wide variety of genes. This family shares two highly conserved sites, the TEA DNA binding domain, after which the proteins have been named, and the domain by which transcription factors bind other coactivators. Because TEAD proteins are not able to activate transcription themselves, they interact with a number of coactivators. These coactivators allow the transcription of the gene of interest to be regulated. Failure of TEAD protein activity regulation can lead to cancer. Therefore, TEAD family proteins nowadays play an important role in the development of new anticancer drugs. One way of inhibiting these proteins is to block the active site in their DNA binding domain, thus, to block their binding to DNA. This bachelor thesis deals with recombinant expression of said DNA binding domain of transcription factor TEAD1, which is extended by amino acids in unstructured regions. After finding suitable conditions of protein production, we proceeded to large volume production which was followed by purification and protein identity verification. Finally, the ability of the produced protein to interact...
Effect of chronic morphine on cell survival after oxidative stress in the SH-SY5Y neuroblastoma cell line
Moutelíková, Karolína ; Hejnová, Lucie (advisor) ; Musílková, Jana (referee)
Morphine is a natural opioid which is used in medicine due to his potent analgesic and sedative effects. In the forefront of scientific interest is a chronic usage of opioids which can lead to a development of drug addiction. Morphine role in oxidative stress was described in last years. It was revealed its protective potencial by many studies. However, some studies described its pro-oxidative effect. The aim of this study was to determinate effect of chronic morphine on cell survival after oxidative stress caused by H202 analog - tBHP in the SH-SY5Y neuroblastoma cell line. The results verified morphine protective effect against oxidative stress. The highest protective effect of morphine was achieved in a concetration of 10 µM. It was desribed that morphine can induce activation of mu-opioid (MOR) and Toll-like 4 (TLR4) receptors signalling pathway on molecular level. The aim of this thesis was to evaluate the role of MOR a TLR4 in protective effect of morphine against oxidative stress by two methods. Firstly, it was used tests of oxidative stress on cell viability. The obtained results demonstrated majority role of TLR4 and minory role of MOR. Afterwards, we assesed changes in the expression of MOR a TLR4 after chronic morphine by SDS-PAGE electrophoresis. Results of these experiments did not...

National Repository of Grey Literature : 33 records found   previous11 - 20nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.