National Repository of Grey Literature 60 records found  previous11 - 20nextend  jump to record: Search took 0.01 seconds. 
The effect of carbon nanostructures on human cell behavior and the role of fetal bovine serum in cell adhesion
Verdánová, Martina ; Hubálek Kalbáčová, Marie (advisor) ; Brábek, Jan (referee) ; Smetana, Karel (referee)
Graphene (G) and nanocrystalline diamond (NCD) are carbon allotropes and promising nanomaterials with an excellent combination of their properties, such as high mechanical strength, electrical and thermal conductivity, possibility of functionalization and very high surface area to volume ratio. For these reasons, G and NCD are employed next to electronics in biomedical applications, including implant coating, drug and gene delivery and biosensing. For a fundamental characterization of cell behavior on G and NCD, we studied osteoblast adhesion and proliferation on differently treated G and NCD. Generally, both G and NCD exhibited better properties for osteoblast cultivation than control tissue culture polystyrene. Better cell adhesion but lower cell proliferation were observed on NCD compared to G. The most surprising finding was that hydrophobic G with nanowrinkled topography enhanced cell proliferation extensively, in comparison to hydrophilic and flat G and both NCDs (hydrophobic and hydrophilic) with slightly higher roughness. Promoted cell proliferation enables faster cell colonization of G and NCD substrates, meaning faster new tissue formation which is beneficial in biomedical applications. Furthermore, it was shown that osteoblast adhesion was promoted in the initial absence of fetal bovine...
Adhesion, growth and differentiation of osteoblasts and mesenchymal stromal cells on biocompatible nanomaterial surfaces
Brož, Antonín ; Hubálek Kalbáčová, Marie (advisor) ; Černý, Jan (referee) ; Kylián, Ondřej (referee)
The thesis is based on articles describing the fundamental research of carbon based nanomaterials for their possible utilization in biomedicine. The aim of this thesis was to describe the way how human osteoblasts (SAOS-2 cell line) and primary human mesenchymal stem cells (hMSC) adhere, grow and behave on surfaces made of several carbon allotropes - nanocrystalline diamond (NCD), single walled carbon nanotubes (SWCNTs) films and graphene. The utilization of carbon as the basic material promised good biocompatibility and possibility of useful surface modifications. The NCD had modified surface nanotopography (nanoroughness and nanostructuring prepared by dry ion etching). All the materials had modified surface atomic termination with oxygen and hydrogen which changes the surface electrical conductivity, surface charge and wettability. It was hypothesized that the surface termination can also influence the cell adhesion and growth. It turned out that all the studied materials were suitable as substrates for cultivation of mentioned cell types. Various nanoroughnesses of NCD surface had different effect on the cell adhesion and cell metabolic activity. Nanostructuring of the NCD influenced the formation of focal adhesions. The surface terminations of NCD and the other studied nanomaterials in...
The effect of endothelial cell proliferation on susceptibility to mitochondrially controlled apoptosis and oxidative stress.
Blecha, Jan ; Novák, Petr (advisor) ; Plecitá, Lydie (referee)
Mitochondria are multifunctional organelles playing a key role in energy metabolism and cell death induction. Mitochondria, and specifically their respiratory chain, are also the main producers of reactive oxygen species (ROS) in cells. Metabolism can be affected by the state of cellular proliferation and certain ROS-inducing agents have an antiangiogenic effect based on the preferential elimination of proliferating endothelial cells (EC). Therefore, in this work we investigated, whether mitochondria could be responsible for different sensitivity of proliferation and confluent EC to cell death. We mainly focused on systems that regulate ROS level and apoptosis: respiratory chain (ROS production), antioxidant defense (ROS detoxification) and Bcl-2 family of proteins (apoptosis regulation). First, we treated EC with functional and nonfunctional respiratory chain with various oxidative stress- and apoptosis-inducing agents and determined ROS production and susceptibility to apoptosis in proliferating and confluent cells. Our results show that functional respiratory chain greatly increases the susceptibility of proliferating cells to ROS induction and apoptosis, whereas in qiescent cells it protects against cell death. Given these findings, we assessed the activity of respiratory chain in proliferating...
Study of differential potential of spermatogonial stem cells via transplantation in vertebrates
Kodedová, Barbora ; Krylov, Vladimír (advisor) ; Pšenička, Martin (referee)
Spermatogonia, or spermatogonial stem cells are necessary to maintain male fertility. In the complex process of ongoing spermatogenesis in the testes these pluripotent stem cells proliferate and differentiate into sperm cells. In 1994 the first spermatogonial transplantation technique was described in rodents to allow the study of male germ cells. The following series of studies of intra- and inter-species transmission of testicular tissue revealed the regenerative capacity of transplanted spermatogonial stem cells and their possible usage. Recently, spermatogonia transplantation systems are developed in many vertebrates making it possible to study the development of sperm as well as artificial production of male and female gametes derived from germ cell donors. The differentiation potential of spermatogonial stem cells enabled the creation of transgenic organisms by genetic manipulation of isolated spermatogonia and subsequent transplantation into a suitable recipient. Spermatogonial transplantation in the future may find their application in regenerative medicine, the treatment of disorders of spermatogenesis, or serve to preservation of genetic stock of endangered species.
START Treaties: Really so Necessary? (1982/91-2010)
Dobeš, Vojtěch Sebastian ; Koura, Jan (advisor) ; Kovář, Martin (referee)
The presented bachelor thesis deals with the issues of American-Soviet (Russian) weapons reduction treaties START, i.e. since the early preparations of the first treaty to the ratification of the third treaty. The goal of this thesis is especially to analyze the texts of the treaties and show their impact on the nuclear arsenals of both countries. Besides the analysis of the treaties, author will also show the reflection and the impact of the treaties on the other countries and other non-proliferation processes. Keywords: START, weapons of mass reduction disarmament, disarmament treaties, analysis, Cold War, USA, USSR, Russian federation, nuclear weapons, proliferation
Production and analysis of cellular conditional inactivation models of the ISWI ATPase Smarca5
Tauchmanová, Petra ; Stopka, Tomáš (advisor) ; Burda, Pavel (referee)
The eukaryotic nuclear processes such as replication, DNA damage repair (DDR) and transcription are highly dependent on the regulation of chromatin structure. The dynamic changes in chromatin accessibility are controlled by a class of chromatin-remodeling factors which form multimeric complexes and use ATP as the source of their helicase activity. In this study we have established a mouse embryonic fibroblast in vitro model with conditional inactivation of chromatin remodeling ATPase Smarca5 and used this powerful tool to test the regulation of cell cycle, proliferation and DDR signaling in conditions with low Smarca5 activity. Our results show that decreased dosages lead to decreased proliferation apparent already within few days post induction of Smarca5 deletion that is accompanied with decrease of cells in S and M phases of cell cycle, increasing cell ploidy and accelerated cell senescence. Additionally, the Smarca5 depleted cells upregulated many protein markers associated with DNA damage and cellular stress. Our results thus indicate that Smarca5 has indispensable roles during cell proliferation including in the maintenance of genome integrity during S phase of cell cycle.
Comparing the US and European Union Security Policies Related to the Threat of Weapons of Mass Destruction Proliferation
Kocková, Tereza ; Jireš, Jan (advisor) ; Slačálek, Ondřej (referee)
The purpose of this assignment is to compare and contrast the non-proliferation policies of the European Union and the United States after 9/11, based on key documents. To begin the focus will be on weapons of mass destruction (WMD); definition, types, key agreements and the organisations fighting against the proliferation. The research will continue by addressing the non-proliferation policy of the EU and the USA on key documents and case studies and how their approach to the iranian nuclear programme has been affected by them. Finally to conclude there will be an analysis of the differences between the policies.
Nervous tissue regeneration following ischemic injury in adulthood - the role of glial cells
Kamenická, Monika ; Anděrová, Miroslava (advisor) ; Kletečková, Lenka (referee)
Ischemic stroke (ischemia) is one of the most common causes of death in the world. The consequences of this disease are enormous and markedly affect the lives of patients who often are unable to live a full quality of life as before. Therefore, the current research is focused on elucidating new mechanisms that could mitigate the effects of ischemia and better regeneration of nerve tissue. This theses aims to summarize the current knowledge about neurogenesis/gliogenesis in the nerve tissue under physiological conditions, after ischemic injury and subsequent regeneration. The first chapter is focused on neurogenesis in the nervous tissue of adults. The two main neurogenic regions are described, such as subventricular zone and the gyrus dentatus in hippocampus. The following is a brief description of cells that are located in neurogenic regions and their function under physiological conditions. The second chapter focuses on gliogenesis in adult nervous tissue and describes the glial cells responsible for numerous functions in CNS. Furthermore, the functions of individual types of glial cells are listed. The third chapter gives the overview about pathophysiology of ischemia. The author tries to explain what is happening in the brain tissue during and following ischemia, what types of ischemia are...
DISP3/PTCHD2 function in neural cells
Konířová, Jana ; Bartůněk, Petr (advisor) ; Anděrová, Miroslava (referee) ; Pacherník, Jiří (referee)
DISP3 protein, also known as PTCHD2, belongs to the PTCHD family of proteins, which contain a sterol-sensing domain in their structure. The expression of the Disp3 gene is high in neural tissues and is regulated by thyroid hormone. The DISP3 gene is associated with development and progression of certain types of tumors, as well as with development of some neural pathologies. Neural stem cells also display high expression of the Disp3 gene. Neural stem cells are defined by their capability to self-renewal and capacity to differentiate into the basic types of neural cells - neurons, astrocytes, and oligodendrocytes. Precise regulation of the balance between proliferation and differentiation of neural stem cells is crucial for development of the central nervous system and its subsequent proper functioning, and disruption of this balance may lead to development of various pathologies. In this work we mainly focused on describing the function of the DISP3 protein in neural cells and tissues. We have shown that during differentiation of neural stem cells, the expression of the Disp3 gene is significant decreased. Furthermore, we have found that in neural stem and progenitor cells, the increased expression of the Disp3 gene promotes their proliferation. Moreover, when Disp3 expression was disrupted, the...
Role of intestinal circadian clock in epithelial transport, proliferation, and tumourigenesis
Soták, Matúš ; Pácha, Jiří (advisor) ; Bendová, Zdeňka (referee) ; Herichová, Iveta (referee)
AABBSSTTRRAACCTT The molecular circadian clock enables anticipation of environmental changes. In mammals, clocks are ubiquitously present in almost all tissues and they are comprised of transcriptional-translational feedback loops of the so-called clock genes. The central clock represents the intrinsic pacemaker which is located in suprachiasmatic nuclei (SCN) of hypothalamus and synchronizes peripheral clocks. Clockwork system in alimentary tract and its regulatory link to intestinal functions are poorly understood. Therefore the objective of the thesis was to characterize molecular clock in particular parts of the rat intestine and to elucidate its link to the intestinal transport, regulation of cell cycle and neoplastic transformation in colonic tissue. We used quantitative RT-PCR (qPCR) to determine circadian profiles of mRNA expression of clock genes in the epithelium of duodenum, jejunum, ileum, and colon of rat. Furthermore, we analysed the expression of genes coding sodium chloride transporters and channels as well as cell cycle regulators in colon. To focus more precisely on different structures of intestinal epithelia we used laser capture microdissection. In addition, we performed Ussing chamber measurements to determine the colonic electrogenic transport. To study the contribution of circadian...

National Repository of Grey Literature : 60 records found   previous11 - 20nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.