Národní úložiště šedé literatury Nalezeno 20 záznamů.  předchozí11 - 20  přejít na záznam: Hledání trvalo 0.01 vteřin. 
Role of Urbach Energy in Photovoltaics
Vlk, Aleš ; Abelová, Lucie ; Hájková, Zdeňka ; Remeš, Zdeněk ; Holovský, Jakub ; Ledinský, Martin
Organic-inorganic halide perovskites provide new opportunities for improvement of optoelectronic device performance, especially the efficiency of solar cells. To evaluate the quality of a new material many parameters has to be taken into account. Here, we discuss one of the often overlooked semiconductor’s parameters, Urbach energy, which is an easily accessible measure of material disorder. Moreover, we present its importance on the example of organic-inorganic halide perovskites.
ZnMg0.8Ca/Sr0.2 ternary alloys - the influence of the third element on material properties
Čapek, Jaroslav ; Pinc, Jan ; Kubásek, J. ; Molnárová, Orsolya ; Maňák, Jan ; Drahokoupil, Jan
Zinc-based materials alloyed with the elements of the 2nd group of the periodic table have been studied as potential materials for the fabrication of various biodegradable implants. In this study, we prepared two ternary alloys: ZnMg0.8Ca0.2 (wt.%) and ZnMg0.8Sr0.2. The microstructure of both ternary alloys was similar, the main difference was in the size and morphology of the Ca/SrZn13 phase. The SrZn13 phase formed fine particles with a submicron size and had more significant hardening effect in the as-cast state compared to the CaZn13 phase. The annealing led to a transformation of the eutectic structure into the “massive” Mg2Zn11 phase which caused a significant increase of both hardness and compressive yield stress. In the annealed states, comparable hardness was observed for both alloys and higher compressive yield strength for the Ca-containing alloy.
Studium tepelných vlastností deagregovaných detonačních nanodiamantů metodami DSC-TG-MS
Zemenová, Petra ; Král, Robert ; Henych, Jiří ; Stehlík, Štěpán
Příspěvek se zabýval studiem tepelných procesů u různě zpracovaných a frakcionovaných vzorků deagregovaných detonačních nanodiamantů metodami termických analýz (DSC-diferenční skenovací kalorimetrie a TG-termogravimetrie) a analýzy plynných produktů (MS-hmotová spektrometrie).
Studium vlivu složení ve směsi CsCl-HfCl.sub.4./sub. na její tepelné vlastnosti v uzavřeném systému pomocí DSC analýzy
Král, Robert ; Zemenová, Petra ; Vaněček, Vojtěch ; Bystřický, Aleš
Příspěvek se zabývá studiem tepelného chování směsi CsCl-HfCl4 o různém složení (nadbytek Cs- nebo Hf-složky) v uzavřeném systému (křemenné ampuli) pomocí neizotermní DSC analýzy. Ze získaných výsledků a jejich porovnáním s fázovým diagramem CsCl-HfCl4 bylo možné získat důležité informace potřebné k optimalizaci růstu krystalů Cs2HfCl6 vertikální Bridgmanovou metodou.
Microstructure and mechanical properties of the potentially biodegradable ternary system Zn-Mg0. 8-Ca0.2
Pinc, Jan ; Čapek, Jaroslav ; Kubásek, J. ; Veřtát, Petr ; Hosová, K.
Zinc and zinc alloys exhibit suitable corrosion properties for biodegradable implants. Insufficient mechanical properties (for some applications) or low biocompatible Zn2+ concentrations can be modified by the alloying by essential elements like magnesium, calcium or strontium. The alloying elements also enhance the biocompatibility of zinc due to a decrease of Zn2+ release which could be toxic in a concentration exceeding 100 µM. In this study, the microstructure and hardness of a potentially biodegradable alloy ZnMg0.8Ca0.2 were observed in relation to different cooling rates. It was found that zinc dendrites, Mg2Zn11 (MgZn2) and CaZn13 phases occur in the material structure. The micro-hardness measurements revealed constant hardness of the particular phases, however, the macro-harness slightly decreased with the decreasing cooling rate due to changes in phase sizes and distribution.
Mass production of hydrogenated ZnO nanorods
Chang, Yu-Ying ; Remeš, Zdeněk ; Míčová, J.
We have developed an inexpensive and efficient technology of hydrothermal growth of ZnO nanorods from zinc nitrate hexahydrate (Zn(NO3)2·6H2O), as a precursor and hexamethylenetetramine (HMTA) (C6H12N4), as a surfactant followed by plasma hydrogenation in a novel inductively coupled plasma (ICP) quartz reactor and equipped with the rotary sample holder to stir powder during plasma treatment. We have optimized the photoluminescence spectroscopy for measuring optical scattering samples with the high sensitivity, precise sample positioning and very low influence of the scattered excitation light. Here we present the latest results on the enhancement of the UV photoluminescence of the ZnO nanorods after plasma hydrogenation. The exciton-related photoluminescence has been significantly enhanced whereas the deep defect related yellow photoluminescence has been significantly decreased.\n
Germanium and tin nanoparticles encapsulated in amorphous silicon matrix for optoelectronic application
Stuchlíková, The-Ha ; Remeš, Zdeněk ; Stuchlík, Jiří
The plasma enhanced chemical vapour deposition was combined with in situ deposition of Ge and Sn thin film by evaporation technique at surface temperature about 220 °C to form nanoparticles on the surface of hydrogenated silicon thin films to prepare diodes. Formation of nanoparticles was additionally stimulated by plasma treatment through a low pressure hydrogen glow discharge. The diodes based on PIN diode structures with and without the embedded Ge or Sn nanoparticles were characterized by temperature dependence of electrical conductivity, activation energy of conductivity, measurement of volt-ampere characteristics in dark and under solar illumination\n
Relation between optical and microscopic properties of hydrogenated silicon thin films with integrated germanium and tin nanoparticles
Stuchlík, Jiří ; Stuchlíková, The-Ha ; Čermák, Jan ; Kupčík, Jaroslav ; Fajgar, Radek ; Remeš, Zdeněk
The hydrogenated amorphous silicon layers (a-Si:H) were deposited by PECVD method on quartz substrates. During interruption of PECVD process the vacuum chamber was pumped up to 10-5 Pa and 1 nm thin films of Germanium or Tin were evaporated on the surface. The materials form isolated nanoparticles (NPs) on the a-Si:H surface. Then the deposited NPs were covered and stabilized by a-Si:H layer by PECVD. Those two deposition processes were alternated 5 times. The a-Si:H thin films with integrated Ge or Sn NPs were characterized optically by PDS and CPM methods, and microscopically by SEM and AFM microscopies. Optical and microscopic properties of the structures are correlated and discussed considering their application in photovoltaics.\n
New binary refractory metal-Fe intermetallic compounds for hard magnet applications
Tchaplianka, Maxim ; Shick, Alexander
We investigate theoretically the electronic and magnetic structure of Fe2Hf. The density functional theory is used to calculate the magnetic moments on individual atoms, the total and projected densities of states, and the magnetic anisotropy energy. The Fe2Hf is found to be metallic and ferrimagnetic, with the magnetic moments of Fe and Hf atoms pointing in the opposite directions. The negative magnetic anisotropy, and the “in-plane” preferential direction of the magnetization are found as a result of theoretical calculations. Our study suggests that the chemical control of the magnetic anisotropy has to be investigated in order to evaluate the potential of Fe2Hf for the permanent magnet applications.\n
The photoluminescence and optical absorptance of plasma hydrogenated nanocrystalline ZnO thin films
Remeš, Zdeněk ; Chang, Yu-Ying ; Stuchlík, Jiří ; Mičová, J.
We have developed the technology of the deposition of the nominally undoped ZnO nanocrystalline thin films by DC reactive magnetron sputtering of Zn target in the gas mixture of argon and oxygen plasma. We have optimized the photoluminescence spectroscopy for measuring optically scattering thin layers with the high sensitivity, precise sample positioning and very low influence of the scattered excitation light. Here we present the latest results on the enhancement of the photoluminescence of the nanocrystalline ZnO thin films after plasma hydrogenation. The photoluminescence in near UV region has been enhanced whereas the deep defect related photoluminescence has been significantly decreased. We found good room temperature stability of the plasma hydrogenated ZnO nanocrystals in air, but fast degradation at elevated temperature\n

Národní úložiště šedé literatury : Nalezeno 20 záznamů.   předchozí11 - 20  přejít na záznam:
Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.