National Repository of Grey Literature 99 records found  previous11 - 20nextend  jump to record: Search took 0.00 seconds. 
Epigenetically based chemoresistance of cancer cells
Feriančiková, Barbara ; Eckschlager, Tomáš (advisor) ; Šácha, Pavel (referee)
Cancer, despite significant advances in diagnosis and treatment, is the second most common cause of death in economically advanced countries. The main reason for the failure of anticancer therapy is the development of chemoresistance, which can be either internal or acquired, and is primarily mediated by the activation of various key regulators (eg MDR, PI3K/Akt, etc.). Genetic and epigenetic mechanisms are involved in activating these pathwa- ys. Significant epigenetic mechanisms that can participate in chemoresistance include regula- tion of gene expression by microRNA (miRNA) and long noncoding RNA (lncRNA). Dere- gulated expression of these non-coding RNAs has been observed in many diseases and their involvement in the initiation and progression of malignant tumors has been demonstrated. In this study, we investigated the expression of long non-coding RNA MIAT in hypoxia (1% O2) in chemosensitive and chemoresistant neuroblastoma cell lines (NBL), as hypoxia is a significant negative prognostic factor of many tumors and is involved in chemoresistance. Relative expression of MIAT was influenced by the number of cultured cells, where expression was increased by culturing more cells. MIAT expression was also significantly increased after 6 hours of NBL culture UKF-NB-4 in hypoxic conditions, and...
The role of mitochondrial metabolism in initiation and adaptation to hypoxic conditions.
Rohlenová, Terezie ; Novák, Petr (advisor) ; Rohlena, Jakub (referee)
We can meet pathological hypoxia in the cases of hearth attack, ischemic stroke, but also during tumor invasion, thanks to insufficient angiogenesis. The activation of HIF- 1 factor during hypoxic conditions is crucial for the cell survival. This factor modulates energetic metabolism in favor of fast progressing glycolysis (with the contribution of glutaminolysis) which provides to cell enough ATP and "building blocks", while suppressing Krebs cycle and respiration because of shortage of oxygen. The thesis studies energetic metabolism of HepG2 cells (derived from liver carcinoma) which are cultivated in the media with various energetic substrates, i. e. glucose or galactose (always together with glutamine and pyruvate) under the hypoxic conditions (5% O2). HepG2 cells use particularly oxidative metabolism for ATP and "building blocks" production under the normoxic conditions while hypoxic environment causes metabolic shift in glycemic condition. Interestingly, cells cultured in galactose (glutamine) didn't switch the energy metabolism from oxidative to aerobic glycolysis such as cells cultivated in glucose, although HIF-1 factor was stabilized. We found that enhanced activity and integrity of mitochondria, enhanced maximal capacity and reserve capacity of respiration chain correlates with...
Antioxidant system in hypoxic heart
Sotáková, Dita ; Žurmanová, Jitka (advisor) ; Kalous, Martin (referee) ; Babula, Petr (referee)
The cardiovascular disease, particularly acute myocardial infarction, is the most common cause of death worldwide. It is well documented that adaptation to chronic hypoxia increases resistance to ischemia-reperfusion (I/R) injury in heart tissue. Reactive oxygen species (ROS) play an important signalling role by the activation of the protective pathways during I/R, although, the excess of ROS during reperfusion leads to cardiac tissue injury. As the cellular antioxidant system is responsible for the maintenance of redox homeostasis, the main aim of this thesis was to investigate the relationship between myocardial tolerance to I/R injury and regulation of main components of antioxidant systems, related transcription factors and their target genes in protective and non- protective regimens of chronic hypoxia. We found differences in cardioprotective phenotype in rats exposed to three regimens of chronic normobaric hypoxia (FiO2 0.1, 3 weeks). The adaptation to continual (CNH) and intermittent (CNH-8; 8 h/day) regimen of hypoxia increased myocardial resistance to I/R damage, whereas 1-hour daily interruption of hypoxic adaptation (INH-23) abolished cardioprotective effect and decreased the ratio of reduced and oxidized glutathione (GSH/GSSG). Both cardioprotective regimens significantly increased...
Autophagy in the heart
Šprláková, Katarína ; Hlaváčková, Markéta (advisor) ; Tomšů, Eva (referee)
Currently, it is growing evidence that autophagy is involved in the prevention of various diseases, which of course also includes heart diseases. This thesis is therefore aimed at clarifying the role of autophagy in the heart, especially during ischemia and subsequent reperfusion. Autophagy is a physiological cellular process by which the cell maintains homeostasis by eliminating long-lived proteins and damaged organelles. The role of autophagy during ischemia/reperfusion in the heart is complex. Predominantly it functions as a pro-survival pathway, because it protects the heart from ischemia or hypoxia. However, when triggered over, which happens during reperfusion, it may lead to cell death. In the heart autophagy is activated in response to various stimuli, such as decrease in ATP and subsequent activation of AMPK, protein Bnip3, reactive oxygen and nitrogen species, the opening of mitochondrial permeability transition pore, endoplasmic reticulum stress or unfolded protein response.
The role of PCr/CK shuttle in adult rat myocardium under normoxic hypoxic conditions
Honcová, Lada ; Žurmanová, Jitka (advisor) ; Novotný, Jiří (referee)
The creatine kinase (CK) is an important enzyme of cell energy metabolism in excitable tissue. It occurs in four isoforms. Two cytosolic isoforms are functional in mono and hetero dimers and two mitochondrial isoforms reach tetramer and octamer forms. Its primary function is the regeneration of ATP close to ATPases and phosphocreatine pool from creatine and ATP, which gives its posphate in places of acute requirements of high energy demand. Dysfunction of CK is connected with heart, muscle and neurological diseases and CK is often used as a clinical indicator. This work is focused to the role of CK in energy metabolism of hypoxia adapted myocardium. CK thaks to production of ADP in mitochondria decreases a membrane potential as well as production of reactive oxygen species (ROS). ROS cause most of damage during ischemic heart disease and infarct of myocardium. That`s why cardioprotective effects and CK itself during hypoxia are investigated.
Gene expression of enzymes involved in the regulation of apoptosis in rat moycardium - effect of chronic and acute hypoxia
Blahová, Tereza ; Žurmanová, Jitka (advisor) ; Kalous, Martin (referee)
Adaptation to chronic hypoxia provides myocardial protection against ischemia - reperfusion injury (IR). Cardioprotective effect of adaptation depends on the degree and duration of hypoxic exposure and daily regime of adaptation. Certain protective regimes of adaptations to hypoxia have been reported to activate proapoptotic signaling pathways and bioactive sphingolipids were recently shown to play important role in the regulation of apoptosis in the heart. We aimed to determine the mRNA level of selected genes related to apoptotic pathways and to sphingolipid metabolism in two models of hypoxic adaptation, continous normobaric hypoxia (CNH 10% O2) with different exposures (4h, 48h, 120h, 21days) and intermitent hypobaric hypoxia (IHH 7000 m, 8h/day). Both ventricles, LV and RV, were analysed after adaptation to CNH and only LV was analysed after IHH adaptation. Our results show that both types of adaptation increased mRNA of proapoptotic genes, CNH mainly in RV and IHH in LV. Furthermore, increased expressions of proapoptotic genes were accompanied by the increase of expression of enzymes producing predominantly protective kinds of sphingolipids. The exact role of apoptosis and sphingolipid signaling molecules in endogenous myocardial protection requires further research. Key words: Apoptosis,...
Myocardial tolerance to ischemia/reperfusion injury - possible protective mechanisms
Alánová, Petra ; Neckář, Jan (advisor) ; Nováková, Olga (referee) ; Vaněčková, Ivana (referee)
Ischemic heart disease is the leading cause of death and disability worldwide. The effects of ischemic heart disease are usually attributable to the detrimental effects of acute myocardial ischemia/reperfusion (I/R) injury. The aim of the thesis was to contribute to current effort to clarify the basis of mechanisms that could save the heart from I/R injury. The whole thesis is based on four studies; while the first three are published, the fourth one has been under revision. In the first study, we proved the involvement of nitric oxide (NO) in the cardioprotective mechanism of chronic hypoxia (CH). We described that exogenously increased availability of NO as well as inhibition of phosphodiesterase type 5 led to increased myocardial tolerance of normoxic and chronically hypoxic rats. The effects of both interventions were not additive, suggesting that NO is included in cardioprotective signaling of CH. Second study continued in investigating molecular mechanisms underlying cardioprotection induced by CH. We showed that infarct size-limiting effect of adaptation to CH was accompanied by increased myocardial concentration of tumor-necrosis factor alpha (TNF-α) and TNF-α receptor R2. In the third study, we examined the effect of dexrazoxane (DEX), the only clinically approved drug against...
Gigantism of Paleozoic insects and other arthropods
Pecharová, Martina ; Prokop, Jakub (advisor) ; Knor, Stanislav (referee)
Gigantism of insects and other arthropods was rather common in Late Paleozoic. Hypothesis of the oxygen limitation is one the probable explanations caused the phenomenon. Carboniferous insect gigantism was probably directly caused by the higher level of atmospheric oxygen due to direct effectiveness on the tracheal system. Therefore the possibility to grow to large sizes is clearly dependent on the amount of available oxygen. Another fact supporting the hypothesis is the extinction or the change of the giant insect forms at the end of the Permian, when the level of atmospheric oxygen suddenly decreased. This thesis also describes the ecological relationships of the Late Paleozoic arthropods, which is clearly connected to the evolution of giant forms. Gigantism during this period was thus developed by the interplay of several factors related to the global elements cycles. Another part covers major groups and representatives of Palaeozoic gigantic insects and other arthropods. The final part is devoted to describing the physiological experiments related to this topic.
Mitochondria as a target of anticancer therapy.
Dvořák, Aleš ; Ježek, Petr (advisor) ; Poučková, Pavla (referee) ; Vecka, Marek (referee)
Mitochondrial isocitrate dehydrogenase 2 (IDH2) catalyzes reductive carboxylation (RC, reverse Krebs cycle pathway) and 2HG synthesis (2HG) - metabolite of which many scientists are interested. 2HG may be concurrently synthetized in cytosol by IDH1. RC is involved in anabolic reactions necessary for cell proliferation - produces citrate, fatty acid precursor - especially in hypoxia. IDH2 and IDH1 are not the only enzymes that are involved in 2HG synthesis. Recently, several enzymes, which participate in 2HG production, have been discovered. 2HG is useful in cancer diagnostics due to its overproduction by transformed cells. Moreover, 2HG may cause epigenetic changes via inhibition of 2-oxoglutarate dependent dioxygenase. In this work, the importance of RC and 2HG synthesis in cancer and healthy cells was investigated by gas chromatography with mass spectrometry detection as well as IDH2 influence. We found that IDH2 significantly participates in reverse RC and 2HG synthesis in breast cancer cell lines and uses glutaminolysis as a supplementary anaplerotic pathway. RC is increased by hypoxia, inhibition of respiration, and decreased by activation of respiration or hypocapnia. We confirmed 2HG synthesis and RC in healthy cells (fibroblasts, breast epithelial cells etc.) as well as in cancer cells....
Hyperventilation in scuba diving
Blažek, Dušan ; Fiala, Miloš (advisor) ; Bažant, Filip (referee)
Title: Hyperventilation in diving Objectives: The main goal of this labour is to finde out, if hyperventilation and inhalation of high-percent oxygen has influence on sport effort in diving. Also outline possible danger and hazards in diving. Very important goal of this labour is to inform reader about diseases and shocks connected with diving, and first aid when they come actual. Methods: In this labour, I used analysis method of documents. It was mainly used literature sources related to human physiology and scuba diving. Results: From this labour results, that hyperventilation and inhalation of high procent oxygen rises achievment at free diving and may have positive influence in short route swimming. The rest of this labour has mainly informative character about physiology and dangers connected to diving. Labour can serve as informative material for beggining divers. Keywords: hypoxya, ventilating, oxygen, acidosis, tetany

National Repository of Grey Literature : 99 records found   previous11 - 20nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.