National Repository of Grey Literature 3 records found  Search took 0.01 seconds. 
The co-culture of keratinocytes and fibroblasts on a multi-layered polyester nanofibrous membrane enriched with platelet lysate
Blanquer, Andreu ; Filová, Elena ; Jenčová, V. ; Brož, Antonín ; Kuželová Košťáková, E. ; Lisnenko, M. ; Procházková, R. ; Bačáková, Lucie
The prevalence of chronic wounds is increasing due to the population ageing and specific illnesses like diabetes mellitus and vascular diseases. Nanofibrous membranes fabricated using synthetic polymers are promising materials to enhance skin wound healing. PCL and PVA membranes are being studied to be used as scaffolds for skin tissue engineering and hydrogels for controlled drug delivery, respectively. The present study considers the development of a multi-layered membrane made of PCL and PVA loaded with platelet lysate (PL). PCL nanofibers allowed cell adhesion and growth, whereas PVA acted as a hydrogel that releases the bioactive compounds of platelet lysate. The cytocompatibility of the membranes containing PL and without it was demonstrated on two cell types involved in wound healing, i.e. keratinocytes and fibroblasts. Both cell types were able to adhere and proliferate on the membranes. In addition, the membrane containing PL enhanced the proliferation of fibroblasts. A co-culture study was also performed by seeding each cell type on one side of the membrane. The cells were co-cultured for 7 days and the results showed that PL increased the proliferation of cells achieving a monolayer of keratinocytes or fibroblasts on each side of the membrane. Thus, the beneficial effect of PCL-PVA+PL membranes on monocultures and co-cultures of skin cells was demonstrated, and these membranes can be considered potential scaffolds for treatment of chronic wounds.
Degradation of polycaprolactone electrospun materials - methods of analysis
Havlíčková, K. ; Řezanka, M. ; Kobera, Libor ; Kuželová Košťáková, E. ; Lukáš, D. ; Jenčová, V.
Biodegradable electrospun materials are widely used for medical application. Polycaprolatone is polymer suitable for electrospinning technology and is very often used to create nanofibrous scaffolds for tissue engineering. The time to disintegration or biodegradation of such materials is very important here. However, testing is not entirely easy. It is not possible to create exactly body-like conditions in vitro. Moreover, it is not easy to find suitable analytical methods that would show exactly what happens in the nanofibrous polycaprolactone electrospun samples at certain stages of degradation, ie how the internal structure of decaying nanofibers changes. This paper describes the traditional use of methods for testing polycaprolatone nanofibers by enzymatically catalysed degradation. Morphological changes are studied using scanning electron microscope images. However, it also offers a non-traditional analysis of polycaprolactone electrospun materials using the ssNMR method.
In vitro testing of carrier system based on nanofibres for vitiligo treatment
Kodedová, Barbora ; Amler, Evžen (advisor) ; Kuželová Košťáková, Eva (referee)
Vitiligo is a skin disease with 2 % prevalence in a worldwide population. It is characterised by loss or decrease in activity of epidermal melanocytes, which lead to skin and hair depigmentation. It has negative impact on psyche, social relationships of patients and reduces the protection of the organism against UV radiation. One of the treatment methods is autologous transplantation of melanocytes or suspension of melanocytes with keratinocytes. Use of the biocompatible membrane, which allows the cultivation of these cells with resulting transplantation on the depigmented lesion, could improve treatment and make it more efficient. The main goal of this work was to create the biocompatible membrane from nanofiber layers of polyvinylalcohol (PVA) which can stand as a carrier for cell transplants in vitiligo therapy. PVA scaffolds were prepared by electrostatic spinning and later on modified by cold methane plasma (CH4) for lowering their hydrofility. Samples of modified nanofiber carriers were analysed according to their physical and chemical characteristics (visualization fiber morphology by SEM, XPS and surface Zeta potential analysis and contact angle). Consequently, adhesion, proliferation and metabolic activity of cultivating mice cell lines of melanocytes (Melan-a) and keratinocytes (XB2) were examined...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.