National Repository of Grey Literature 24 records found  1 - 10nextend  jump to record: Search took 0.01 seconds. 
Characterization of hydrogenated silicon thin films and diode structures with integrated germanium nanoparticles
Stuchlík, Jiří ; Fajgar, Radek ; Kupčík, Jaroslav ; Remeš, Zdeněk ; Stuchlíková, The-Ha
Substrates with ZnO (or ITO) conductive layers were covered by thin film of a-Si:H deposited by PECVD technique. Under a turbo-molecular vacuum (10-4 Pa) the reactive laser ablation (RLA) was used to cover this a-Si:H thin film by germanium NPs. The RLA was performed using focused excimer ArF laser beam (193 nm, 100 mJ/pulse) under SiH4 background atmosphere (0.5 Pa). As a target the elemental germanium was used. Reaction between ablated Ge and silane led to formation of Ge NPs covered by thin SiGe layer. Then the deposited NPs were covered and stabilized by a-Si:H layer by PECVD. Those two deposition processes was alternated and applied a few times. The Si:H thin films with integrated Ge NPs were characterized by microscopic, spectroscopic and diffraction techniques. I-V characteristics of final diode structures without and under illumination were measured as well as their electroluminescence behaviour.
The hydrogen plasma doping of ZnO thin films and nanoparticles
Remeš, Zdeněk ; Neykova, Neda ; Potocký, Štěpán ; Chang, Yu-Ying ; Hsu, H.S.
The optical absorptance and photoluminescence studies has been applied on the hydrogen and oxygen plasma treated, nominally undoped ZnO thin films and aligned nanocolumns grown on the nucleated glass substrate by the hydrothermal process in an oil bath containing a flask with ZnO nutrient solution. The localized defect states at 2.3 eV below the optical absorption edge were detected by photothermal deflection spectroscopy (PDS) in a broad spectral range from near UV to near IR. The optical absorptance spectroscopy shows that hydrogen doping increases free electron concentration changing ZnO to be electrically conductive (hydrogen doping).\n
The deposition of amorphous and amorphous hydrogenated silicon with embedded cubic Mg.sub.2./sub.Si nanoparticles
Stuchlíková, The-Ha ; Stuchlík, Jiří ; Remeš, Zdeněk ; Fajgar, Radek ; Galkin, N.G. ; Galkin, K.N. ; Chernev, I.M.
We study possibilities how to increase a by usage of magnesium silicide nanoparticles (Mg2Si-NPs) in structure of Si: H. In this paper we introduce two technics -combination of PECVD and Vacuum Evaporation (VE) and Reactive Laser Ablation (RLA) -for preparation of cubic structure of Mg2Si-NPs in amorphous (a-Si) or amorphous hydrogenated (a-Si: H) silicon matrix. Formation of Mg2Si-NPs was proved by Raman spectroscopy. Likewise we introduce optical changes measured at absorption edge and the first results on realized NIP structures.
The deposition of germanium nanoparticles on hydrogenated amorphous silicon
Stuchlík, Jiří ; Volodin, V.A. ; Shklyaev, A.A. ; Stuchlíková, The-Ha ; Ledinský, Martin ; Čermák, Jan ; Kupčík, Jaroslav ; Fajgar, Radek ; Mortet, Vincent ; More Chevalier, Joris ; Ashcheulov, Petr ; Purkrt, Adam ; Remeš, Zdeněk
We reveal the mechanism of Ge nanoparticles (NPs) formation on the surface of the hydrogenated amorphous silicon (a-Si:H) deposited by Plasma Enhanced Chemical Vapor Deposition (PECVD) on ITO and a on boron doped nanocrystalline diamond (BDD). The coating of Ge NPs on a-Si:H was performed by molecular beam epitaxy (MBE) at temperatures up to 450 °C. The Ge NPs were characterized by Raman spectroscopy, scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). The nanocrystalline Ge particles are conglomerates of nanocrystals of size 10-15 nm and quantum dots (QDs) with size below 2 nm embedded in amorphous Ge phase. After coating with Ge NPs the a-Si:H thin films show better adhesion on BDD substrates then on ITO substrates.
Preparation of zinc oxide nanorods colloid from thin layers
Mičová, Júlia ; Remeš, Zdeněk ; Chang, Yu-Ying ; Neykova, Neda
The interest in ZnO (zinc oxide) nanoparticles is increasing due to low cost of their processing as well as the ability of fabricating ZnO nanostructures with controllable morphology such as size, shape and orientation. Our choice of method of the preparation of the nanostructured thin ZnO layers is the hydrothermal growth of ZnO nanorods on glass substrates coated by the nucleation layer deposited by the reactive magnetron sputtering. We have developed and optimized conditions of the thin layer growth with controllable dimensions of nanorods followed by the ultrasound peeling. The colloid of ZnO nanorods was characterized by measuring the size of particles using the dynamic light scattering (DLS) and the scanning electron microscopy (SEM). We found that the dynamic light scattering (DLS) can’t be directly used for size evaluation of ZnO nanorods due to their non- sperical shape. \n
Hydrogen plasma treatment of ZnO thin films
Chang, Yu-Ying ; Neykova, Neda ; Stuchlík, Jiří ; Purkrt, Adam ; Remeš, Zdeněk
ZnO is an attractive wide band gap semiconductor with large exciton binding energy, high refractive index, high biocompatibility and diversety of nanostructure shapes which makes it suitable for many applications in the optoelectronic devices, optical sensors, and biosensors. We study the effect of hydrogen plasma treatment of the nominally undoped ZnO thin film deposited by DC reactive magnetron sputtering of Zn target in the gas mixture of argon and oxygen plasma. The SEM images show that the crystal size increases with film thickness. We confirm, that the electrical conductivity significantly increases after hydrogen plasma treatment by 4 orders of magnitude. Moreover, the increase of the infrared optical absorption, related to free carrier concentration, was detected below the optical absorption edge by the photothermal deflection spectroscopy.\n
The intrinsic submicron ZnO thin films prepared by reactive magnetron sputtering
Remeš, Zdeněk ; Stuchlík, Jiří ; Purkrt, Adam ; Chang, Yu-Ying ; Jirásek, Vít ; Štenclová, Pavla ; Prajzler, V. ; Nekvindová, P.
The DC reactive magnetron sputtering of metallic target in oxide atmosphere is a simple method of depositing the intrinsic (undoped) nanocrystalline layers of metal oxides. We have optimized the deposition of the intrinsic ZnO thin films with submicron thickness 50-500 nm on fused silica glass substrates and investigated the localized defect states below the optical absorption edge down to 0.01 % using photothermal deflection spectroscopy from UV to IR. We have shown that the defect density, the optical absorptance and the related optical attenuation in planar waveguides can be significantly reduced by annealing in air at 400 °C.
Calculations of nanocrystalline diamond-covered waveguides based on amorphous silicon
Jirásek, Vít ; Prajzler, Václav ; Remeš, Zdeněk
Nanocrystalline diamond (NCD) coatings on planar waveguides (WG) in the IR region allow to design optical sensors sensitive to absorbers like proteins or other biomolecules. In this contribution, we present a 2D model of a multi-layer WG developed under FEM (finite element method) simulation software Comsol Multiphysics. The model is based on the modified wave equation solved in the frequency domain and includes optical absorption. It was found that for the single-mode WG working in the narrow region of 1550-2000 nm the silicon thickness must be 150-320 nm. It was found that in order to keep a reasonable signal attenuation, the NCD film must be prepared with the optical absorption coefficient lower than 10 cm-1, being a rather challenging task. Dependencies of the signal attenuation on the NCD film thickness, absorbing layer height, its absorption coefficient and exciting wavelengths are presented.\n
Characterization of amorphous and microcrystalline Si layers and ZnO layers on glass
Vaněček, Milan ; Holovský, Jakub ; Poruba, Aleš ; Remeš, Zdeněk ; Purkrt, Adam
Optical and photoelectrical properties of materials from TEL Solar were characterized in the Institute of Physics, AS CR in a broad spectral region and a high dynamic range. Conclusions on material properties with respect to thin film silicon solar cells were drawn.
Production of nitrogen vacancy centers in nanocrystalline diamond thin film for quantum biosensing applications
Jakl Krečmarová, Marie ; Gulka, Michal ; Fekete, Ladislav ; Remeš, Zdeněk ; Petráková, Vladimíra ; Mortet, Vincent ; Nesládek, M.
Due to its excellent properties such as chemical stability and biocompatibility, diamond is an ideal material for bio sensing application. In particular, nitrogen vacancy (NV) centres in diamond are promising candidates for optical bio-sensing application in nanodiamond particles and single crystal diamond by irradiation (electron, proton, neutron, particles) followed by annealing has been recently developer. Production of NV centres in CVD diamond thin film is important for fabrication of new bio sensor.

National Repository of Grey Literature : 24 records found   1 - 10nextend  jump to record:
See also: similar author names
Interested in being notified about new results for this query?
Subscribe to the RSS feed.