National Repository of Grey Literature 26,682 records found  previous11 - 20nextend  jump to record: Search took 0.75 seconds. 

Black Chromia Coatings on Metal Tubes for the Solar Collectors
Brožek, V. ; Mastný, L. ; Novák, M. ; Vilémová, Monika ; Kubatík, Tomáš František
This paper describes the results of the first phase of the study preparation, structure and properties of coatings modification of black chromium oxide on copper, aluminium, iron and zirconium tubes for solar collectors. The coatings are prepared by plasma spraying of liquid chromate method which is known as liquid precursor plasma spraying. Coatings have the function of an energy trap for thermal radiation wavelengths of 1 μm – 3 μm i.e. in the IR region. At the same time, the coating increases the corrosion resistance of metal substrates. The nanometric structure and thickness of the coating depend of the feeding distance and the concentration of chromate precursors. For the deposition of nanometric splats of melt chromiumIII oxide, a new type of feeder that injects precursors into the water stabilized thermal plasma produced by the WSP® generator has been\ndeveloped.\n

NUMERICAL SUPPORT FOR SPECIMEN LOADED BY BENDING AND WEDGE SPLITTING FORCES FOR MEASUREMENT OF CONCRETE PROPERTIES
Seitl, Stanislav ; Liedo, R. ; Holušová, T.
Fracture mechanical properties of silicate based materials are performed from various fracture mechanicals tests. For evaluation of parameters, the knowledge about calibration and compliance function is so important. Therefore, in contribution the compliance and calibration curves for a novel test based on combination wedge splitting test (WST) and three-point bend test (3PBT) are introduced. These selected variants exhibit significantly various stress state conditions at the crack tip, or, more generally, in the whole specimen ligament.

Sorption and Stabilization of Metals/Mettalloids by Innovative Synthesized Sorbent Amochar.
Ouředníček, P. ; Trakal, L. ; Komárek, M. ; Pohořelý, Michael
Remediation of contaminated soil which is based on stabilization and immobilization of potential\nhazardous substance by sorption materials has been studied intensively nowadays. Biochar – activated organic carbon belongs to this group of stabilizing agents which can adsorb wide range of contaminants, including metals/metalloids. Surface area of the biochars is quite large in general and functional groups (e.g. COO–) can form chelates or alkaline elements on the surface, which is represented by cation exchange capacity. Altogether with the high pH values (7.00 – 10.00), biochars are quite effective sorbents and can adsorb metals/metalloids from the solution (ground water), especially in acidic soils (in the environments affected by intensive mining activities). Sorption\neffectiveness can be increased (especially for As (V) or Cr (VI) sorption) by modification of biochar by various types of secondary oxides. Innovative sorbent AMOchar (AMO + biochar) has been synthesized currently. The product was prepared by adding of biochar to the reaction solution during amorphous manganese oxide (AMO) synthesis. The AMOchar was formed mainly by Mn-oxalates which had coated surface of the pristine biochar. AMOchar composite was able to remove significantly higher amounts of various metal(loid)s from the solution despite the rather high pH of the material. Sorption effectiveness was high not only in case of Pb (II) sorption (almost 99%), and Cd(II) (51.2%), but also a very high amount of As(V), 91.4%. Additionally, both AMOchar composite was able to reduce Mn leaching. This can avoid potential post-contamination caused by the dissolution of less stable Mn-oxalates as observed in the pure AMO.
Fulltext: content.csg - Download fulltextPDF
Plný tet: SKMBT_22316111113040 - Download fulltextPDF

Plasma spraying from liquids: plasma liquid interaction and coating build up
Tesař, Tomáš ; Mušálek, Radek ; Medřický, Jan ; Lukáč, František
Plasma spraying from liquid feedstocks is a rapidly developing field of thermal spraying since the coatings prepared from liquids exhibit some unique features, such as high hardness, thermal shock resistance or low thermal and electric conductivity. The key factor influencing the final coating character and properties is the input material which may be in the form of a suspension or a solution. Parameters of the selected suspension (solids concentration, viscosity, surface tension, chemical composition, etc.) or solution (concentration, etc.) determine its interaction with the plasma jet which strongly influences the coating buildup. This proceeding introduces the problematics of the interaction between the liquid feedstock material with the plasma jet and presents the way of evaluation of the coating buildup.

Methodology for determining the relevant material characteristics of historical building materials for the restoration intervention
Slížková, Zuzana ; Frankeová, Dita ; Tišlová, R.
The aim of this metolodogy is to present a recommended list of material properties which have to be identified and evaluated within material survey of historical momuments.\n\n
Fulltext: content.csg - Download fulltextPDF
Plný tet: 0457225_2015_Slizkova_et_al_Metodika_urceni_rozhodnych_materialovych_charakteristik_historickych_stavebnich_materialu_pro_planovany_restauratorsky_zasah - Download fulltextPDF

Erosion protection of slopes from assignment to implementation
Konopecká, Vladislava ; Janeček, Miloslav (advisor) ; Kalibová, Jana (referee)
The thesis is following up on the findings to the issues presented in the Bachelor's thesis, where they were described mainly the methods and materials used to secure the slopes of pipeline, will address not only the final solution method of protection against erosion of the slopes, but in particular all conditioning influences such as the topography, the type and quality of rock and soil in the area of the building, surrounding buildings, and last but not least property relations that can significantly affect the design solution in terms of difficulty of implementation, durability, aesthetics and economic performance of the resulting construction works. Alpha-Omega of the initial phase is the analysis and the interdependence of the issues just for land consolidation, anti-erosion measures, construction procedures in accordance with the geology of the chosen territory and the intended realization of the construction project. The evaluation of the risks associated with this issue on the basis of field investigation, examination with a valid legal legislation, SWOT analysis will be ended.

Design of Experiment for Non-Stationary Processes of Production
Jadrná, Monika ; Macák, Tomáš (advisor)
The doctoral thesis is concerned with the services sector and the area of mass production. Particularly, the optimization of the product portfolio of the travel agency and the optimization of production rounds of ammunition. The theoretical part deals with the current overview of discussed topic. Further, the terminology and methods of the decision-making process are defined to support decision making. The theoretical basis of research focused on the choice of appropriate input variables in the area of services, and on the choice of a particular material option in the production area and appropriate equipment for the production. The theoretical part forms the basis for the practical part of the thesis. For the doctoral thesis was chosen an enterprise operating in the defined sector. Product portfolio for the services sector is optimised using Fuzzy logic and Fuzzy sets so that the enterprise can maintain its competitiveness in todays highly ambitious market. Product portfolio for manufacture is optimised for achieving desired properties of the product. The main aim of the thesis is to propose a new methodological approach for the management of selected business processes in their nonstationary time course. The aim of the practical implementation is to verify the functionality of the proposed methodological approach, both in the area of services and in the field of mass production.

Properties of Aerosol, Produced by Laser Ablation of Standard Materials for ICP-MS Analysis.
Holá, M. ; Nováková, H. ; Ondráček, Jakub ; Vojtíšek, M. ; Kanický, V.
Laser ablation (LA), together with inductively coupled plasma mass spectrometry (ICP-MS) as a detection system, has become a routine method for the direct analysis of various solid samples. The product of laser ablation contains a mixture of vapour, droplets and solid particles. All components are finally transported to a plasma by a carrier gas as a dry aerosol including mainly agglomerates of primary nanoparticles. In general, characterisation of aerosols by their particle size distribution (PSD) represents indispensable tool for fundamental studies of the interaction of laser radiation with various materials. The particle size distribution of dry aerosol originating from laser ablation of standard material was monitored by two aerosol spectrometers – Fast Mobility Particle Sizer (EEPS) and Scanning Mobility Particle Sizer (SMPS) simultaneously with laser ablation - ICP-MS analysis.\n
Fulltext: content.csg - Download fulltextPDF
Plný tet: SKMBT_C22016102412241 - Download fulltextPDF

FRACTURE MECHANICS ASSESSMENT OF CRACKED WELDED POLYOLEFIN PIPES
Mikula, Jakub ; Ševčík, Martin ; Hutař, Pavel ; Náhlík, Luboš
The aim of this paper is to present methodology for estimation of fracture mechanics parameters in polyolefin pipes with an axially oriented crack using three dimensional numerical analyses. Linear elastic fracture mechanics is used for description of fracture behavior. In the paper, three different variants of pipe weld with an internal axial semi-elliptical crack are studied. Numerical models correspond to a cracked pipe containing material nonhomogeneity in the welding area caused by welding process. A critical locations of the crack initiated along the pipe wall is found and the stress intensity factor for such cracks with real crack shape are numerically estimated in these critical locations. The methodology presented here can be used for estimation of residual lifetime of welded polymer pipes containing crack.

Time lapse tomography of fracture progress in silicate-based composite subjected to the loading a combination with acoustic emission scanning
Kumpová, Ivana ; Kytýř, Daniel ; Fíla, Tomáš ; Veselý, V. ; Trčka, T. ; Vopálenský, Michal ; Vavřík, Daniel
The initiation and propagation of a fracture in quasi-brittle materials (such as silicatebased composite) is an increasingly discussed topic for which various methods of research have been developed/applied. As the quasi-brittle silicate-based composite compounds are very non-homogenous, the mechanism of the crack initiation and propagation can be very different even for samples with the\nidentical geometry. One possible approach to study the fracture mechanism in quasi-brittle materials is to use several different experimental techniques in a single experiment and perform detail analysis to identify generally valid fracture process phenomena. In this work, a simultaneous monitoring of fracture\nprocess zone formation and propagation by three different methods is presented and discussed. A three point bending test was performed on a notched silicate composite specimen. During the loading process, a highly accurate force displacement dependence was recorded accompanied with X-ray radiography,\nX-ray computed tomogra-phy and acoustic emission scanning.