National Repository of Grey Literature 10 records found  Search took 0.00 seconds. 
PROBIOTIC GENES OF SIGNIFICANT LACTIC ACID BACTERIA IN FOOD
Konečná, Jana ; Ševčovičová,, Andrea (referee) ; Doškař, Jiří (referee) ; Španová, Alena (advisor)
Isolation of deoxyribonucleic acid (DNA) is an important step in the molecular diagnostics of microorganisms. A high quality of isolated DNA is necessary for DNA amplification by the polymerase chain reaction (PCR). The conventional DNA isolation using phenol chloroform extraction and DNA precipitation in ethanol is time consuming and requires the use of toxic phenol. Magnetic separation techniques using magnetic solid particles are one of modern methods to speed up the nucleic acids isolation. The aim of this work was to use two different types of magnetic particles for solidphase DNA extraction. The amounts of DNA in separation mixtures were measured using ultraviolet spectrophotometry (UV). The first experimental conditions were tested on chicken erythrocytes DNA. Phosphate buffer (pH 7, 7.6 and 8) was used for adsorption of DNA on magnetic particles. It was shown that approximately almost one half of DNA was adsorbed to the particles. The elution conditions of DNA were also optimized. Secondly, bacterial DNA was tested. This DNA eluted from the particles was in PCR ready quality. High resolution melting (HRM) curve analysis is a simple, low-cost method for amplicon discrimination and easy connection with real-time polymerase chain reaction (PCR). In this contribution, we report rapid species identification of strains belonging to the Lactobacillus group using HRM-PCR. Three different DNA isolation methods were used in this work: phenol extraction, separation using magnetic particles and commercial kit. Ten sets of targeted gene fragments primers (LAC1 – LAC2, LAC2 – LAC4, P1V1 – P2V1, Gro F – Gro R, 3BA-338f – Primer 1, V1F – V1R, CHAU - V3F – CHAU - V3R, CHAU - V6F – CHAU - V6R, poxcDNAFw – poxPromRVC, poxcDNAFw – poxPromRVT) were tested for amplification of the 16S rRNA gene. Use of GroF/R and LAC2/4 primers pairs successfully identify strains belong to the Lactobacillus group. The variance between used extraction methods for evidence of HRM curves was found.
The analysis of DNA isolated from different types of probiotic products using real-time PCR and HRM analysis
Sedláková, Lucie ; Rittich, Bohuslav (referee) ; Trachtová, Štěpánka (advisor)
The aim of this diploma thesis was to introduce real-time PCR with high-resolution melting analysis for Bifidobacterium species. Currently a small number of publication, dealing with identification of Bifidobacterium species using high-resolution melting analysis, is available. According to publications dealing with identification of lactic acid bacteria were selected primers P1V1 and P2V1, LAC1 and LAC2, LsppUPF and LsppUPR, V3F and V3R, V6F and V6R. Using this primers bacterial DNA was amplified by real-time PCR with high-resolution melting analysis. After evaluation of the measured results efficiency of selected primers was verified on DNA izolated from complex sample of probiotic product. After further optimisation real-time PCR with high-resolution melting analysis could be suitable using selected primers for Bifidobacterium species.
Use of Molecular Biology Techniques for Identification and Analysis of Probiotic Bacteria
Konečná, Jana ; Doškař, Jiří (referee) ; Kráčmar, Stanislav (referee) ; Obruča, Stanislav (advisor)
Isolation of deoxyribonucleic acid (DNA) is an important step in the molecular diagnostics of microorganisms. A high quality of isolated DNA is necessary for DNA amplification by the polymerase chain reaction (PCR). The conventional DNA isolation using phenol-chloroform extraction and DNA precipitation in ethanol is time-consuming and requires the use of toxic phenol. Alternative method of DNA isolation is use of commercially available kits which, however, are expensive and their efficiency is low. Magnetic separation techniques using magnetic solid particles are one of modern methods to speed up the nucleic acids isolation. The aim of this work was to use two different types of magnetic particles for solid-phase DNA extraction. Magnetic microparticles P(HEMA – co – GMA) containing –NH2 group and nanoparticles PLL, whitch contains polylysine. The amounts of DNA in separation mixtures were measured using ultraviolet spectrophotometry (UV). The first experimental conditions were tested on chicken erythrocytes DNA. Phosphate buffer (pH 7, 7.6 and 8) was used for adsorption of DNA on magnetic particles. It was shown that approximately almost one half of DNA was adsorbed on the particles. The elution conditions of DNA were also optimized. Secondly, bacterial DNA was tested. After optimalization, the developed method was used for DNA isolation from real food supplements. This DNA eluted from the particles was in PCR ready quality. High resolution melting (HRM) curve analysis is a simple, low-cost method for amplicon discrimination and easy connection with real-time polymerase chain reaction (PCR). In this thesis, we report rapid species identification of strains belonging to the Lactobacillus group using HRM-PCR. Three different DNA isolation methods were used in this work: phenol extraction, separation using magnetic particles and commercial kit. Ten sets of targeted gene fragments primers (LAC1 – LAC2, LAC2 – LAC4, P1V1 – P2V1, Gro F – Gro R, 3BA-338f – Primer 1, V1F – V1R, CHAU - V3F – CHAU - V3R, CHAU - V6F – CHAU - V6R, poxcDNAFw – poxPromRVC, poxcDNAFw – poxPromRVT) were tested for amplification of the 16S rRNA gene. Use of GroF/R and LAC2/4 primers pairs successfully identify strains belong to the Lactobacillus group. The variance between used extraction methods for evidence of HRM curves was found.
Bacterial genotyping based on the oligonucleotide melting temperature
Šandová, Hana ; Škutková, Helena (referee) ; Nykrýnová, Markéta (advisor)
This bachelor’s thesis deals with genotyping based on the oligonucleotide melting temperatures. In the theoretical part, DNA, typing, experimental and theoretical genotyping methods are described. The practical part of the thesis deals with a program that is designed to calculate the melting temperatures of sequences based on different methods, and the graphical user interface was created. In the following part, the measured melting temperatures of bacterial isolates of Klebsiella pneumoniae are compared to the theoretically calculated melting temperatures. In the last part of the thesis, the possibility of genotyping using cluster analysis based on the theoretical melting temperatures is explored.
Use of high resolution melting analysis for the study of lactic acid bacteria
Knápková, Monika ; Němcová, Andrea (referee) ; Brázda, Václav (advisor)
Currently, there is a growing interest in the use of probiotic products, and there are many of them in the market. With the growing interest, greater emphasis is placed on the identification of declared probiotic microorganisms. Precise identification of microbial composition is often a difficult task and it requires more advanced methods especially in the field of molecular diagnostics. The diploma thesis was focused on the verification of the presence od declared probiotic microorganisms in probiotic food supplements GS Laktobacily Forte 21, Biopron 9 Premium and Linex® Forte. DNA was isolated from the complex matrices by phenol extraction, commercial kit and magnetic carriers F79/L3-PLL in the quality suitable for PCR. Subsequently, the isolated DNA was amplified by real-time polymerase chain reaction using genus- and species-specific primers. The specific PCR product was subjected to agarose gel electrophoresis, whereas species identification was not always in compliance with the data declared by producers. The next part of the thesis was focused on polymerase chain reaction with high-resolution melting analysis to distinguish bacterial strains belonging to the Lactobacillus group and to identify probiotic microorganisms present in the complex matrices of the probiotic food supplements. Eight primer sets were tested (V1F HRM a V1R-HRM, CHAU-V3F a CHAU-V3R, CHAU-V6F a CHAU-V6R, LAC2 a LAC4, LAC1 a LAC2, P1V1 a P2V1, poxcDNAFw a poxPromRVC, poxcDNAFw a poxPromRVT). Three primer pairs (V1F HRM a V1R-HRM, poxcDNAFw a poxPromRVC, poxcDNAFw a poxPromRVT) were evaluated as the most suitable for distinguishing Lactobacillus bacterial strains.
Bacterial genotyping based on the oligonucleotide melting temperature
Šandová, Hana ; Škutková, Helena (referee) ; Nykrýnová, Markéta (advisor)
This bachelor’s thesis deals with genotyping based on the oligonucleotide melting temperatures. In the theoretical part, DNA, typing, experimental and theoretical genotyping methods are described. The practical part of the thesis deals with a program that is designed to calculate the melting temperatures of sequences based on different methods, and the graphical user interface was created. In the following part, the measured melting temperatures of bacterial isolates of Klebsiella pneumoniae are compared to the theoretically calculated melting temperatures. In the last part of the thesis, the possibility of genotyping using cluster analysis based on the theoretical melting temperatures is explored.
Use of Molecular Biology Techniques for Identification and Analysis of Probiotic Bacteria
Konečná, Jana ; Doškař, Jiří (referee) ; Kráčmar, Stanislav (referee) ; Obruča, Stanislav (advisor)
Isolation of deoxyribonucleic acid (DNA) is an important step in the molecular diagnostics of microorganisms. A high quality of isolated DNA is necessary for DNA amplification by the polymerase chain reaction (PCR). The conventional DNA isolation using phenol-chloroform extraction and DNA precipitation in ethanol is time-consuming and requires the use of toxic phenol. Alternative method of DNA isolation is use of commercially available kits which, however, are expensive and their efficiency is low. Magnetic separation techniques using magnetic solid particles are one of modern methods to speed up the nucleic acids isolation. The aim of this work was to use two different types of magnetic particles for solid-phase DNA extraction. Magnetic microparticles P(HEMA – co – GMA) containing –NH2 group and nanoparticles PLL, whitch contains polylysine. The amounts of DNA in separation mixtures were measured using ultraviolet spectrophotometry (UV). The first experimental conditions were tested on chicken erythrocytes DNA. Phosphate buffer (pH 7, 7.6 and 8) was used for adsorption of DNA on magnetic particles. It was shown that approximately almost one half of DNA was adsorbed on the particles. The elution conditions of DNA were also optimized. Secondly, bacterial DNA was tested. After optimalization, the developed method was used for DNA isolation from real food supplements. This DNA eluted from the particles was in PCR ready quality. High resolution melting (HRM) curve analysis is a simple, low-cost method for amplicon discrimination and easy connection with real-time polymerase chain reaction (PCR). In this thesis, we report rapid species identification of strains belonging to the Lactobacillus group using HRM-PCR. Three different DNA isolation methods were used in this work: phenol extraction, separation using magnetic particles and commercial kit. Ten sets of targeted gene fragments primers (LAC1 – LAC2, LAC2 – LAC4, P1V1 – P2V1, Gro F – Gro R, 3BA-338f – Primer 1, V1F – V1R, CHAU - V3F – CHAU - V3R, CHAU - V6F – CHAU - V6R, poxcDNAFw – poxPromRVC, poxcDNAFw – poxPromRVT) were tested for amplification of the 16S rRNA gene. Use of GroF/R and LAC2/4 primers pairs successfully identify strains belong to the Lactobacillus group. The variance between used extraction methods for evidence of HRM curves was found.
PROBIOTIC GENES OF SIGNIFICANT LACTIC ACID BACTERIA IN FOOD
Konečná, Jana ; Ševčovičová,, Andrea (referee) ; Doškař, Jiří (referee) ; Španová, Alena (advisor)
Isolation of deoxyribonucleic acid (DNA) is an important step in the molecular diagnostics of microorganisms. A high quality of isolated DNA is necessary for DNA amplification by the polymerase chain reaction (PCR). The conventional DNA isolation using phenol chloroform extraction and DNA precipitation in ethanol is time consuming and requires the use of toxic phenol. Magnetic separation techniques using magnetic solid particles are one of modern methods to speed up the nucleic acids isolation. The aim of this work was to use two different types of magnetic particles for solidphase DNA extraction. The amounts of DNA in separation mixtures were measured using ultraviolet spectrophotometry (UV). The first experimental conditions were tested on chicken erythrocytes DNA. Phosphate buffer (pH 7, 7.6 and 8) was used for adsorption of DNA on magnetic particles. It was shown that approximately almost one half of DNA was adsorbed to the particles. The elution conditions of DNA were also optimized. Secondly, bacterial DNA was tested. This DNA eluted from the particles was in PCR ready quality. High resolution melting (HRM) curve analysis is a simple, low-cost method for amplicon discrimination and easy connection with real-time polymerase chain reaction (PCR). In this contribution, we report rapid species identification of strains belonging to the Lactobacillus group using HRM-PCR. Three different DNA isolation methods were used in this work: phenol extraction, separation using magnetic particles and commercial kit. Ten sets of targeted gene fragments primers (LAC1 – LAC2, LAC2 – LAC4, P1V1 – P2V1, Gro F – Gro R, 3BA-338f – Primer 1, V1F – V1R, CHAU - V3F – CHAU - V3R, CHAU - V6F – CHAU - V6R, poxcDNAFw – poxPromRVC, poxcDNAFw – poxPromRVT) were tested for amplification of the 16S rRNA gene. Use of GroF/R and LAC2/4 primers pairs successfully identify strains belong to the Lactobacillus group. The variance between used extraction methods for evidence of HRM curves was found.
Use of high resolution melting analysis for the study of lactic acid bacteria
Knápková, Monika ; Němcová, Andrea (referee) ; Brázda, Václav (advisor)
Currently, there is a growing interest in the use of probiotic products, and there are many of them in the market. With the growing interest, greater emphasis is placed on the identification of declared probiotic microorganisms. Precise identification of microbial composition is often a difficult task and it requires more advanced methods especially in the field of molecular diagnostics. The diploma thesis was focused on the verification of the presence od declared probiotic microorganisms in probiotic food supplements GS Laktobacily Forte 21, Biopron 9 Premium and Linex® Forte. DNA was isolated from the complex matrices by phenol extraction, commercial kit and magnetic carriers F79/L3-PLL in the quality suitable for PCR. Subsequently, the isolated DNA was amplified by real-time polymerase chain reaction using genus- and species-specific primers. The specific PCR product was subjected to agarose gel electrophoresis, whereas species identification was not always in compliance with the data declared by producers. The next part of the thesis was focused on polymerase chain reaction with high-resolution melting analysis to distinguish bacterial strains belonging to the Lactobacillus group and to identify probiotic microorganisms present in the complex matrices of the probiotic food supplements. Eight primer sets were tested (V1F HRM a V1R-HRM, CHAU-V3F a CHAU-V3R, CHAU-V6F a CHAU-V6R, LAC2 a LAC4, LAC1 a LAC2, P1V1 a P2V1, poxcDNAFw a poxPromRVC, poxcDNAFw a poxPromRVT). Three primer pairs (V1F HRM a V1R-HRM, poxcDNAFw a poxPromRVC, poxcDNAFw a poxPromRVT) were evaluated as the most suitable for distinguishing Lactobacillus bacterial strains.
The analysis of DNA isolated from different types of probiotic products using real-time PCR and HRM analysis
Sedláková, Lucie ; Rittich, Bohuslav (referee) ; Trachtová, Štěpánka (advisor)
The aim of this diploma thesis was to introduce real-time PCR with high-resolution melting analysis for Bifidobacterium species. Currently a small number of publication, dealing with identification of Bifidobacterium species using high-resolution melting analysis, is available. According to publications dealing with identification of lactic acid bacteria were selected primers P1V1 and P2V1, LAC1 and LAC2, LsppUPF and LsppUPR, V3F and V3R, V6F and V6R. Using this primers bacterial DNA was amplified by real-time PCR with high-resolution melting analysis. After evaluation of the measured results efficiency of selected primers was verified on DNA izolated from complex sample of probiotic product. After further optimisation real-time PCR with high-resolution melting analysis could be suitable using selected primers for Bifidobacterium species.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.