National Repository of Grey Literature 59 records found  1 - 10nextend  jump to record: Search took 0.01 seconds. 
Study of energy consumption reduction of block of flats
Svoboda, Lukáš ; Šteffek, Libor (referee) ; Ostrý, Milan (advisor)
The goal of the thesis is firstly to get all the information about the initial state of solved block of flats, which is located on the street Merhautova 76/954 in Brno – Černá pole, in terms of constructions, energy consumption and initial state of heating system. In the second part of the thesis, where are discussed the possibilities of reduction of energy consumption, variant drafts of reduction of energy consumption and their financial costs and the choice of optimal variant. Third part deals with assement of solved block of flats in terms of sustainable built environment by using tool to rate buildings in terms of sustainable built environment - SBToolCZ, evaluation of possibility to use renewables. In the end are written summaries and recommendations.
Design of a Testbench for Reduce Temperature Testing of High-Pressure Pump Systems
Škývara, Tomáš ; Čáp, Jaroslav (referee) ; Ramík, Pavel (advisor)
The subject of diploma thesis is design of a testing cabin for high pressure pump testing under low temperature. The objective is to project a cooling system and a cooled testing cabin. Suggested cooling system must be sized to cool down the estimated power and the cabin is supposed to be located inside the existing testbench. There was peroformed an analytical calculation of thermic evaluation, several parts of calculation were verified using ANSYS program simulation. The second section of the thesis is focused mainly on the design, especially on design of testing cabin. The result of diploma thesis is prepared for utilization in Bosch Diesel s.r.o. Jihlava.
Heating of flat house
Zajíček, Václav ; Vendlová, Lucie (referee) ; Topič, Jan (advisor)
The thesis is composed of three parts - theoretical, computational and a project part. The theoretical part deals with heat sharing through conduction, flow and radiation. The computational part is focused on the overall calculation of the heating system to operate smoothly and reliably. Three gas condensing boilers are designed as a source of heat. The heating of the water is solved as a reservoir. It's source of heat is one gas condensation boiler. The project part contains a technical report and the project documentation on the stage of the implementation dossier.
Mathematical simulation of temperature profile in the subsoil and creation of a model corresponding its real state
Charvátová, Pavlína ; Katunský,, Dušan (referee) ; Ostrý, Milan (referee) ; Čupr, Karel (advisor)
Increasing demands for low heat losses and energy intensity of a building influence energy calculations. Higher demands are placed on the accuracy of the calculations. An important part of the thermal engineering calculations is the determination of the correct boundary conditions. An important input factor is primarily the indoor and outdoor environment, and temperature is the most important parameter for these types of enviromnent. It is not always the temperature of the external environment, but the environment that is adjacent to the soil or to unheated or differently heated spaces. The possibilities of modeling temperatures below the object are described in the standard ČSN EN ISO 10211. This standard specifies details for a geometric model for the numerical calculation of heat flows to assess the total heat loss of buildings or parts thereof, as well as to derive linear and point heat transfer factors. Furthermore, to calculate minimum surface temperatures to assess the risk of surface condensation and to determine the surface temperature factors. These are two different computational models. Therefore, it would be appropriate to simplify these calculations by simplifying the boundary conditions, namely to conduct an isotherm at a certain level below the terrain, which will be considered as a boundary condition, which is also based on long-term experience with "frost-free" depth. This calculation would be unambiguous, clear and simple.
Thermal properties of the window frame and the connection joints
Hejný, Lukáš ; Hraška,, Jozef (referee) ; Doc.Ing. Miloslav Bagoňa, Ph.D (referee) ; Štěpánek, Ladislav (referee) ; Kalousek, Miloš (advisor)
This thesis deals with the solution problem of fitting a window in the wall, especially for passive houses. It provides options to optimize the window connection joints, improve the thermal transmittance of the window frame, thereby reducing the total heat loss through the window. In the first part of the thesis is a research literature on the windows and heat technical and physical mechanisms. Are described equations and physical processes taking place in the windows and related building structures. This section describes the basic points in history, technical description of windows, etc. and present ways of assembly Installation the window and the influence of the thermal properties of the heat loss. The next part deals with the description of the work and the results obtained in the course of doctoral study. Describes the main objectives of the dissertation thesis, calculations and simulations of temperature fields and the results of the calculated values. Furthermore are described and analyzed measurement data and compared with the calculated values. At the end dissertation thesis are given opportunities to improve the current solution regarding the heat transfer coefficient of the frame, the optimal way of installation fillers windows in the perimeter wall and improve the thermal properties of the connecting joint.
The influence of the furnace gas recirculation on characteristic parameters of the combustion process
Macenauerová, Tereza ; Skryja, Pavel (referee) ; Bělohradský, Petr (advisor)
This thesis deals with the evaluation of emissions of NOx and CO formed during the combustion process when the burner utilizing fuel staging and internal flue gas recirculation is used. In the theoretical part the NOx formation mechanisms and methods used to suppress their formation are described. This is followed with the currently valid legislation in the Czech Republic in terms of the emission limits for NOx and CO in stationary sources. In the work, combustion tests were performed at the burners testing facility at UPEI BUT. The tests revealed that the most important parameters, which influence the NOx formation, are fuel staging, increasing combustion air excess and the utilization of new equipment that induces the flue gas to be drawn back into the burner. The equipment is installed in the burner’s air channel. The dependence of flue gas temperature, heat flux to the combustion chamber’s section walls and in-flame temperatures distribution in the horizontal symmetry plane of the combustion chamber on various parameters were investigated. The parameters included the geometry of the equipment for flue gas recirculation, primary/secondary ratio, geometry of nozzles for secondary fuel supply, tangential orientation of these nozzles towards the burner axis, and the excess of combustion air.
Program for calculation of ventilation and heating in synchronous machine
Kolář, Pavel ; Ondrůšek, Čestmír (referee) ; Huzlík, Rostislav (advisor)
This master´s thesis deals with ventilation of synchronous generators with a cylindrical rotor. For the design of ventilation we apply basic physical laws in the field of hydromechanics and thermomechanics. Therefore the first chapters are devoted to these subjects. They are followed by the description of ventilation systems and a thermal net is created and solved for one of them consisting of the thermal resistance and sources. The final part deals with a program, which I developed in Visual Basic 2008 Express Edition. This program enables to calculate the ventilation and heating of individual parts of the machine after entering basic machine dimensions and losses.
Characteristic parameters of oxygen-enhanced combustion process
Hudák, Igor ; Hájek, Zdeněk (referee) ; Bělohradský, Petr (advisor)
Diplomová práce se zabývá spalováním zemního plynu při využití vzduchu s vyšším obsahem kyslíku (21–46 % kyslíku ve spalovacím vzduchu), tzv. kyslíkem obohaceným spalováním (OEC). Technologie OEC nalezla uplatnění v průmyslu, kde se jsou nároky na zvýšenou produktivitu, dosažení vyšší tepelné účinnosti, zlepšení vlastností plamene, snížení náklady, či zlepšení kvality výsledného produktu. Ačkoliv OEC přináší řadu výhod, je nutné zmínit i nevýhody jako: poškození zařízení, nestejnoměrné zahřívání, narušení plamene, zvýšené emise anebo zpětný zášleh plamene. Zkoušky proběhly na zkušebně hořáků, která umožňuje testovat hořáky nejen na plynná a kapalná paliva, ale i hořáky navržené pro kombinované spalování při maximálním výkonu hořáku 1 800 kW. Při zkouškách byl použit plynový „low-NOx“ hořák se stupňovitým přívodem paliva. V diplomové práci je popsán vliv obsahu kyslíku ve spalovacím vzduchu na emise oxidů dusíku (NOx), teplotu plamene, přenos tepla ze spalin do stěn spalovací komory, a také vlastnosti plamene, zvláště pak jeho stabilitu, tvar a rozměry. Zkoušky proběhly při výkonech 300 kW, 500 kW a 750 kW, přičemž pro výkon 750 kW proběhly testy jak při jednostupňové, tak dvoustupňové konfiguraci.
The energy demand of buildings with almost zero energy consumption
Horáčková, Leona ; Vyhlídalová, Karolína (referee) ; Horák, Petr (advisor)
The master thesis is focused on rating of buildings with almost zero energy consumption. Theoretical part summarizes general requirements on buildings with almost zero energy consumption. It also discusses other categories of buildings on terms of energy demand and influences and factors affecting the energy performance of buildings. The calculating part comparing three different construction systems of designed family house by means of energy demand with energy assessment and energy performance certificate of buildings.
Identification of Thermal Conductivity and Thermal Capacity of Building Materials by the "Hot Wire Method"
Průša, David ; Čermák,, Jan (referee) ; Šťastník, Stanislav (advisor)
This aim of task deals with study of heat dissipation mechanisms and the description of physical phenomena, which is accompanied by non-stationary measurement of thermal characteristics by the method "hot-wire method". In particular, we observe the coefficient of thermal conductivity and its dependence on various variables such as the temperature of the measured sample, its moisture state, the volume of the sample and its porosity. The above mentioned findings are used for the invention of the measuring device of a nonstationary gauge, which is based on regular heating and is dedicated to measuring the thermal conductivity coefficient and the heat capacity by the "hot-wire method" method. In the last part of the thesis is verified functionality of the proposed measuring device, the suitability of the created algorithm for the processing of the measured data and the evaluation of the results was verified. The reproducibility of the measurements was verified and the measured results were compared with the measurement methods, which are commonly used. the influence of humidity on the coefficient of thermal conductivity.

National Repository of Grey Literature : 59 records found   1 - 10nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.