National Repository of Grey Literature 34 records found  beginprevious21 - 30next  jump to record: Search took 0.01 seconds. 
Interactions of mouse polyomavirus with Toll-like receptors
Pokorná, Karolína ; Forstová, Jitka (advisor) ; Němečková, Šárka (referee)
Toll-like receptors (TLRs) are important receptor family of innate immunity. They enable fast recognition of infection through so called pathogen associated molecular patterns (PAMPs). In this thesis, we studied interaction of mouse polyomavirus (MPyV) with TLRs of mouse embryonic fibroblasts (MEF cells). We observed that inhibition of TLR4 signaling abolished response of MEF cells to MPyV. This suggested that TLR4 plays a role in MEF cells recognition of MPyV. To detect response of MEF cell to MPyV, we measured IL-6 production by ELISA. Next, we investigated effect of TLR4 signalization on MPyV infection. Inhibition of TLR4 signaling with CLI-095 inhibitor did not affect number of infected cells. Presence of TLR4 antagonist, LPS-RS, led to significant decrease in quantity of infected cells 20 hours post infection. Decrease in number of infected cells was also observed in presence of LPS. Viral infection was also inhibited by TLR9 antagonist ODN 2088. We also investigated role of MAP kinases in MPyV infection. We tested, whether inhibition of selected MAP kinases would affect number of infected cells. Inhibition of kinase p38 did not affect infection. On the other hand, inhibition of MEK kinase or JNK resulted in decrease of number of cells infected by MPyV.
The role of posttranslational modifications of minor proteins and acetylation of microtubules in mouse polyomavirus infection
Mariničová, Zuzana ; Horníková, Lenka (advisor) ; Saláková, Martina (referee)
Mouse polyomavirus (MPyV) capsid is composed of the main capsid protein VP1 and minor capsid proteins VP2 and VP3. Minor proteins are not essential capsid assembly, but they are key for efficient viral infection. The first part of this thesis studies the modifications of VP2 and VP3, the deamidation of Asn at 253 of VP2 (137 of VP3) and N-terminal acetylation of Ala of VP3, which could be the cause of double bands for VP2 and VP3 on SDS-PAGE. Mutated genomes of MPyV N253D (Asn to Asp) and N253E (Asn to Glu) simulating deamidation and A117V (Ala to Val) with reduced acetylation were prepared previously. We prepared three isolations of the mutant viruses and we confirmed that the deamidation is the cause of the double bands. Mutant viruses were compared to the wild type in terms of efficiency of infection, but the role of deamidation could not be proven. Virus A117V is noninfectious either due to lowered acetylation or the substitution of amino acid at this position. This thesis also studies the role of -tubulin acetylation in the infection of MPyV. The role of -tubulin acetylation in viral infection is being investigated to find new antiviral strategies. Acetylation rises after MPyV infection, but this is not due to a change in mRNA expression of tubulin acetylating (TAT1) or deacetylating enzyme...
Utilization of mouse polyomavirus derived virus-like particles for cargo delivery into cells
Polidarová, Markéta ; Španielová, Hana (advisor) ; Šmahel, Michal (referee)
and key words Mouse polyomavirus-derived virus-like particles composed from major capsid protein VP1 (MPyV VP1-VLPs) are interesting structures for use as a delivery system of various cargos into cells. VP1 protein self-assembles into icosahedral particles of 45 nm in diameter that are hollow highly regular nanoparticles. In this work, model small molecule cargo, Cyclodextrin-Based Bimodal Fluorescence/MRI Contrast Agent, was encapsidated into MPyV VP1-VLPs. The cargo was stably associated with VLPs and was delivered into mammalian cells using these VLPs. To prevent VLPs entrapment in endolysosomal compartments and increase the potential of VLPs applications, MPyV VP1 protein was modified by insertion of histidine-tag (6 histidine long sequence surrounded by glycine and serine) sequences into VP1 surface loop DE, because histidine modification of synthetic systems had enhancing effect on endosome escape and cargo delivery. With the use of in Bac-to-Bac® baculovirus expression system His-VP1 protein was expressed in insect cells and a variety of VP1-assemblies was obtained: long tubules and small 20nm VLPs formed from VP1 with 4 histidine-tags in DE loop, and novel VP1 nanostructure, which we named nano-jumpers, formed from VP1 with 2 histidine-tags. Nonetheless the endosome escape properties of...
Optimization of methods for analysis of early steps of mouse polymavirus life cycle
Soukup, Jakub ; Španielová, Hana (advisor) ; Němečková, Šárka (referee)
Mouse polyomavirus is a type species of Polyomaviridae family and serves as model for studying viral infection of human pathogenic polyomaviruses. Minor proteins of viral capsid have been found to be necessary for effective initiation of infection. In order to study their role in the early steps of infection we utilized the novel Cre-LoxP system for production of the viral mutant lacking both minor proteins. Virus produced this way was compared with virus produced by standard method and we found that both systems facilitate production of mutant virus with the comparable quality and quantity. The mutant virus contained reduced amount of viral DNA and formed virions with impaired stability. For further studies of intracellular virion trafficking we prepared virions with genomes modified by thymidine analogues 5- bromo-2'-deoxyuridine (BrdU) and 5-Ethynyl-2'-deoxyuridine (EdU) and optimized the methods for analogue detection. The viral genome become accessible for detection 4 hours post infection. For ultramicroscopic analysis of translocation of virus to the nucleus we used freeze substitution. All this methods will be utilized for detailed study of distinct steps in viral infection. Key words: Mouse polyomavirus, minor proteins,...
Studies of polyomavirus trafficking from late endosomes towards the cell nucleus
Štach, Martin ; Forstová, Jitka (advisor) ; Němečková, Šárka (referee)
Mouse polyomavirus (MPyV) is a model virus of the Polyomaviridae family. Polyomaviruses are small non-enveloped DNA viruses. They cause severe problems to immunocompromised patients. Their oncogenic potential is known in animals and humans. Trafficking of MPyV within the cell is not clear yet. The virus enters via smooth monopinocytic vesicles and continues to early and late endosomes. From there, the virus is transported to the ER by unknown mechanism. It bypasses Golgi aparatus (GA). One possible pathway is from late endosomes to trans-Golgi network (TGN) facilitated by Rab9 GTPase and then in COPI vesicles to the ER. In this thesis, the effect of inhibitors of retrograde transport (Brefeldin A, Golgicide A) on MPyV infection was evaluated. Brefeldin A is not completely specific; it has effect on whole endosomal system. Golgicide A causes specific disruption of transport via TGN and GA. Both inhibitors suppressed infection of MPyV. Confocal microscopy revealed colocalization of some MPyV virions with markers of TGN and COPI vesicles. MPyV didn't colocalize with cis-Golgi marker. Unfortunately, the effect of overexpression of Rab9 dominant negative mutant couldn't been evaluated due to its high cytotoxicity. However, overexpression of wild type Rab9 slightly increased infectivity. The results...
Minor Structural Proteins of Polyomaviruses: Attributes and Interactions with Cellular Structures
Vinšová, Barbora ; Horníková, Lenka (advisor) ; Saláková, Martina (referee)
Even though polyomaviruses have been intensively studied for more than 60 years, the role of minor structural proteins VP2 and VP3 in some important steps of viral life cycle has still not been fully elucidated, explicitly their role in viral genome delivery to the cell nucleus and their involvement in late phases of viral life cycle. This diploma thesis focuses on the study of minor proteins of Mouse polyomavirus (MPyV) and Human polyomavirus BK (BKV). Four rabbit polyclonal antibodies against minor proteins of polyomaviruses MPyV or BKV have been prepared within this diploma thesis. Two of these prepared antibodies target minor proteins of MPyV (α-MPyV VP2/3) or BKV virus (α-BKV VP2/3), other two prepared antibodies recognize C-terminal sequence common to minor proteins VP2 and VP3 of MPyV (α-MPyV C-termVP2/3) or BKV virus (α-BKV C-termVP2/3). In the second part of this diploma thesis we aimed to study toxicity of BKV virus minor proteins during individual production in mammalian cells. Obtained results suggest that minor proteins of BKV virus might not exhibit as high levels of cytotoxicity as minor proteins of MPyV virus. Third part of this diploma thesis is devoted to investigation of interactions of BKV and MPyV minor proteins with cellular proteins and within one another respectively....
Directed evolution of mouse polyomavirus
Váňová, Jana ; Španielová, Hana (advisor) ; Mašek, Tomáš (referee)
The method of directed evolution represents a new approach to generate proteins with new or altered properties. The principle of directed evolution is random mutagenesis of the coding sequence for a protein of our interest followed by selection of generated mutants for the desired property. The aim of this pilot study was to investigate the possibility of utilization of directed evolution for alteration of mouse polyomavirus original tropism and virus retargeting to a model prostate cancer cell line. To generate randomly mutated gene encoding the major capsid protein of mouse polyomavirus, which is responsible for the interaction of the virus with cellular receptor for viral cell entry, error-prone PCR and DNA shuffling methods were used. Production of viruses composed of mutant major capsid protein was ensured by Cre/loxP site-specific recombination. The thesis also dealt with the design and characterization of the system for viral mutant selection. It was found that the prostate cancer cell lines markedly vary in their ability to bind and internalize particles derived from mouse polyomavirus. This knowledge can be used for the preparation of virus-like particles for prostate cancer diagnostics in the future. The study demonstrated that the method of directed evolution can be used for production...
Mouse polyomavirus: The role of cell cytoskeleton in virus endosomal trafficking and properties of the minor capsid proteins
Žíla, Vojtěch ; Forstová, Jitka (advisor) ; Hozák, Pavel (referee) ; Rumlová, Michaela (referee)
Mouse polyomavirus (MPyV) is a non-enveloped DNA tumor virus, which replicates in the host cell nucleus. MPyV enters cells by receptor-mediated endocytosis and its subsequent transport towards the nucleus requires acidic environment of endosomes and intact microtubules, which are important for virus delivery to endoplasmic reticulum (ER). In ER, capsid disassembly and uncoating of viral genome take place. The mechanism of subsequent translocation of viral genome from ER into nucleoplasm is still only poorly understood process with predicted involvement of cellular factors and viral minor capsid proteins VP2 and VP3. Once the genome appears in the nucleus, early viral antigens are produced and mediate suitable environment for replication of viral genomes. After replication of viral DNA and morphogenesis of virions, virus progeny is released from the cells during its lysis. The research presented in the first part of thesis focused on intracellular transport of MPyV and involvement of cytoskeletal networks during virus delivery to the ER. In particular, we investigated still unclear role of microtubules during virus trafficking in endosomes, and involvement of microtubular motors. We found that MPyV trafficking leading to productive infection does not require the function of kinesin-1 and kinesin-2,...
Major capsid protein of mouse polyomavirus: interaction with cellular structures
Horníková, Lenka
Mouse polyomavirus (MPyV) is small non-enveloped DNA virus. Although this virus has been studied for almost 60 years, it still remains unclear, how can virus transport its genetic information to the cell nucleus. Also, the mechanism of virion morphogenesis is not well understood. First part of this work is focused on endocytic pathway which is used by MPyV for trafficking toward the cell nucleus. Using dominant negative mutant of caveolin-1 we showed that caveolin-1dependent endocytic pathway, described for SV40, is not used by MPyV for productive infection. MPyV is transported to early endosomes. Acidic milieu of endosomes is indispensable for productive infection. Preventing virus localisation into early endosomes (dominant negative mutant of Rab 5 GTPase) or endosomes alkalisation (by ammonium chloride or bafilomycin A1) led to dramatic decrease of virus infectivity. Alkalisation of endosomes entailed retention of MPyV in early endosomes. It indicates that virus is further transported to late endosomes. Finally, we confirmed by FRET that MPyV is in perinuclear space localized into recycling endosomes. Another poor characterized process is virion morphogenesis. To characterize the participation of cellular proteins in virion precursor complexes, nuclear as well as whole-cell lysates of infected cells or...
Preparation of expression vectors and virus mutants for studies of the minor structural proteins of polyomaviruses.
Cibulka, Jakub ; Forstová, Jitka (advisor) ; Šroller, Vojtěch (referee)
Polyomaviruses are small non-enveloped DNA viruses infecting birds and mammals, including human. Their capsid consists of the major capsid protein, VP1, and two minor capsid proteins, VP2 and VP3. The VP2 and VP3 proteins are supposed to have an important function in the transport of viral genome into the cell nucleus, which is a key step to facilitate viral replication. VP2 and VP3 proteins of mouse polyomavirus and SV40 have an ability to bind and disrupt cellular membranes. This feature is believed to be involved in the transport of viral genome into the nucleus. Plasmids carrying genes of the minor capsid proteins of Merkel cell polyomavirus were prepared in order to produce and visualize these proteins in mammalian cells. These proteins are known to have very unusual sequences compared to other human polyomaviruses or related mouse polyomavirus. When produced alone, the minor capsid proteins of Merkel cell polyomavirus did not significantly interact with cellular membranes, unlike the minor proteins of the mouse polyomavirus. The second goal of this work was to prepare mouse polyomavirus mutants with deletion in hydrophobic domains of VP2 and VP3 proteins. These domains are likely responsible for the mentioned membrane interactions. Prepared mutants were non-infectious. The loss of infectivity was not...

National Repository of Grey Literature : 34 records found   beginprevious21 - 30next  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.