National Repository of Grey Literature 31 records found  previous6 - 15nextend  jump to record: Search took 0.00 seconds. 
Forensic method for recognizing the authenticity of artworks using multispectral analysis
Lánský, David ; Mezina, Anzhelika (referee) ; Burget, Radim (advisor)
Detecting forgeries is crucial for protecting the art market and preserving the authenticity of artworks. This thesis focuses on forgery detection using convolutional neural networks (CNNs). The main goal was to develop advanced methods capable of identifying anomalies, and thus potential forgeries, in images with their X-ray photographs. During this research, U-net architectures and binary semantic segmentation techniques were applied, enabling successful anomaly detection. The main contribution of this work is 112 models of four different U-net and U-net++ architectures, which effectively highlight anomalies through the method of binary semantic segmentation. The models were trained on a set of images with their synthetically created X-ray images and artificially generated anomalies. In this way, the models can detect lead spots, nails, layers of hidden paintings, and other defects, while also being able to ignore insignificant elements, such as picture frames and overexposed X-ray images. The testing of the models occurred in two phases. In the first phase, they were evaluated using the IoU metric on a set of 400 synthetically generated data, where in the best cases, they achieved up to 83.5 % IoU. In the second phase, they were evaluated subjectively on images with real X-rays and natural anomalies. This approach combines traditional X-ray techniques with modern computer vision, revealing deviations that might be overlooked during standard visual inspection. By bridging these technologies, this work opens new possibilities for the protection of art collections and provides a solid foundation for further research in the field of art forgery detection using artificial intelligence.
Semantic Segmentation of Pathologies in Retinal Images
Čabala, Roman ; Orság, Filip (referee) ; Kavetskyi, Andrii (advisor)
The thesis aimed to segment pathology visible in the retina images, such as exudates, hemorrhages, and microaneurysms. For that, two well known deep neural networks, named U-Net and SegFormer, were trained. To test the performance of the models, one publicly available dataset was used, named IDRiD. Obtained results were reported after analyzing different factors which affected the performance of the models U-Net and Segformer.
A convolutional neural network for image segmentation
Mitrenga, Michal ; Petyovský, Petr (referee) ; Jirsík, Václav (advisor)
The aim of the bachelor thesis is to learn more about the problem of convolutional neural networks and to realize image segmentation. This theme includes the field of computer vision, which is used in systems of artificial intelligence. Special Attention is paid to the image segmentation process. Furthermore, the thesis deals with the basic principles of artificial neural networks, the structure of convolutional neural networks and especially with the description of individual semantic segmentation architectures. The chosen SegNet architecture is used in a practical application along with a pre-learned network. Part of the work is a database of CamVid images, which is used for training. For testing, a custom image database is created. Practical part is focused on CNN training and searching for unsuitable parameters for network learning using SW Matlab.
Self-supervised learning in computer vision applications
Vančo, Timotej ; Richter, Miloslav (referee) ; Janáková, Ilona (advisor)
The aim of the diploma thesis is to make research of the self-supervised learning in computer vision applications, then to choose a suitable test task with an extensive data set, apply self-supervised methods and evaluate. The theoretical part of the work is focused on the description of methods in computer vision, a detailed description of neural and convolution networks and an extensive explanation and division of self-supervised methods. Conclusion of the theoretical part is devoted to practical applications of the Self-supervised methods in practice. The practical part of the diploma thesis deals with the description of the creation of code for working with datasets and the application of the SSL methods Rotation, SimCLR, MoCo and BYOL in the role of classification and semantic segmentation. Each application of the method is explained in detail and evaluated for various parameters on the large STL10 dataset. Subsequently, the success of the methods is evaluated for different datasets and the limiting conditions in the classification task are named. The practical part concludes with the application of SSL methods for pre-training the encoder in the application of semantic segmentation with the Cityscapes dataset.
Object Detection in the Laser Scans Using Convolutional Neural Networks
Marko, Peter ; Beran, Vítězslav (referee) ; Veľas, Martin (advisor)
This thesis is aimed at detection of lines of horizontal road markings from a point cloud, which was obtained using mobile laser mapping. The system works interactively in cooperation with user, which marks the beginning of the traffic line. The program gradually detects the remaining parts of the traffic line and creates its vector representation. Initially, a point cloud is projected into a horizontal plane, crating a 2D image that is segmented by a U-Net convolutional neural network. Segmentation marks one traffic line. Segmentation is converted to a polyline, which can be used in a geo-information system. During testing, the U-Net achieved a segmentation accuracy of 98.8\%, a specificity of 99.5\% and a sensitivity of 72.9\%. The estimated polyline reached an average deviation of 1.8cm.
Assessment of Uncertainty of Neural Net Predictions in the Tasks of Classification, Detection and Segmentation
Vlasák, Jiří ; Kohút, Jan (referee) ; Herout, Adam (advisor)
This work focuses on comparing three widely used methods for improving uncertainty estimations: Deep Ensembles, Monte Carlo Dropout, and Temperature Scaling. These methods are applied to six computer vision models that are pretrained as well as trained from scratch. The models are then evaluated on computer vision datasets for classification, semantic segmentation, and object detection using a wide range of metrics. The models are also evaluated on distorted versions of these datasets to measure their performance on out-of-distribution data.      These modified models achieve promising results. Ensembles outperform the other models by as high as 70 % in accuracy and 0.2 in IOU on the distorted MedSeg COVID-19 segmentation dataset while also outperforming the other models on the CIFAR-100 and FMNIST datasets.
Semantic segmentation of images using convolutional neural networks
Špila, Filip ; Věchet, Stanislav (referee) ; Krejsa, Jiří (advisor)
Tato práce se zabývá rešerší a implementací vybraných architektur konvolučních neuronových sítí pro segmentaci obrazu. V první části jsou shrnuty základní pojmy z teorie neuronových sítí. Tato část také představuje silné stránky konvolučních sítí v oblasti rozpoznávání obrazových dat. Teoretická část je uzavřena rešerší zaměřenou na konkrétní architekturu používanou na segmentaci scén. Implementace této architektury a jejích variant v Caffe je převzata a upravena pro konkrétní použití v praktické části práce. Nedílnou součástí tohoto procesu jsou kroky potřebné ke správnému nastavení softwarového a hardwarového prostředí. Příslušná kapitola proto poskytuje přesný návod, který ocení zejména noví uživatelé Linuxu. Pro trénování všech variant vybrané sítě je vytvořen vlastní dataset obsahující 2600 obrázků. Je také provedeno několik nastavení původní implementace, zvláště pro účely použití předtrénovaných parametrů. Trénování zahrnuje výběr hyperparametrů, jakými jsou například typ optimalizačního algoritmu a rychlost učení. Na závěr je provedeno vyhodnocení výkonu a výpočtové náročnosti všech natrénovaných sítí na testovacím datasetu.
Urban Element Detection Using Satellite Imagery
Oravec, Dávid ; Herout, Adam (referee) ; Zlámal, Adam (advisor)
Táto práca sa zameriava na správnu detekciu objektov v satelitných snímkach pomocou konvolučných neuronových sietí. Cieľom práce je pomocou natrénovaného modelu detekovať bazény a tenisové ihriská v satelitných snímkach z rôznych miest. Model pracuje s dátami z 10 rôznych miest. Pri vypracovaní bol využitý model neurónovej siete RetinaNet a knižnica Detectron2. Model, ktorý sa podarilo vytrénovať, dokáže detekovať objekty s priemernou presnosťou (AP50) na úrovni 63,402 %. Práca môže byť prínosom v oblasti automatizovania získavania štatistík o povrchu zeme.
Semantic Segmentation in Mountainous Environment
Pelikán, Jakub ; Čadík, Martin (referee) ; Brejcha, Jan (advisor)
Semantic segmentation is one of classic computer vision problems and strong tool for machine processing and understanding of the scene. In this thesis we use semantic segmentation in mountainous environment. The main motivation of this work is to use semantic segmentation for automatic location of geographic position, where the picture was taken. In this thesis we evaluated actual methods of semantic segmentation and we chose three of them  that are appropriate for adapting to mountainous environment. We split the dataset with mountainous environment into validation, train and test sets to use for training of chosen semantic segmentation methods. We trained models from chosen methods on mountainous data. We let segments from the best trained models get evaluated in electronic survey by respondents and we evaluated these segments in process of camera orientation estimation. We showed that chosen methods of semantic segmentation are possible to use in mountainous environment. Our models are trained on 11, 5 or 4 mountainous classes and the best of them achieve on 4 class mean IU 57.4%. Models are usable in practise. We show it by their deployment as a part of camera orientation estimation process.
Computer Aided Recognization and Classification of Coat of Arms
Vídeňský, František ; Kočí, Radek (referee) ; Zbořil, František (advisor)
This master thesis describes the design and development of the system for detection and recognition of whole coat of arms as well as each heraldic parts. In the thesis are presented methods of computer vision for segmentation and detection of an object and selected methods that are the most suitable. Most of the heraldic parts are segmented using a convolution neural networks and the rest using active contours. The Histogram of the gradient method was selected for coats of arms detection in an image. For training and functionality verification is used my own data set. The resulting system can serve as an auxiliary tool used in auxiliary sciences of history.

National Repository of Grey Literature : 31 records found   previous6 - 15nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.