National Repository of Grey Literature 40 records found  beginprevious21 - 30next  jump to record: Search took 0.01 seconds. 
Influence of bioplastics´ biodegradation on soil quality
Paluchová, Natálie ; Doležalová Weissmannová, Helena (referee) ; Kučerík, Jiří (advisor)
V poslední době se pozornost polečnosti obrátila k mikroplastům. Jsou produkovány různými odvětvími a šíří se napříč prostředím. Po dlouhou dobu byly považovány za inertní, bez dalšího vlivu na rostliny a jiné živé organismy, avšak jak zjistily nedávné studie, mohly by představovat vážnou hrozbu. Několik vědců, včetně nás, se proto začalo soustředit na jejich transport a transformace v životním prostředí. Většina se však zaměřuje pouze na jejich přítomnost v mořských a sladkých vodách, a proto jejich chování ve vzduchu a půdě zůstává nejasné. Kromě toho byla pozornost soustředěna i na bioplasty. Jsou prezentována jako ekologická alternativa, která má vyřešit všechny dosud zmíněné problémy (a další). Avšak často se zapomíná, že jejich hlavní výhoda může být zároveň nevýhodou. Z tohoto důvodu se tato diplomová práce zaměřuje na negativní účinky spojené s přítomností mikroplastů (konkrétně bioplastu poly-(R)-3-hydroxybutyrátu) v půdě jako jejich běžný receptor. Kombinovali jsme respirometrii, elementární analýzu, termogravimetrii a enzymatické testy, abychom zkoumali fyzikálně-chemické změny v půdě vyvolané přítomností bioplastu. Naše výsledky ukázaly negativní vliv na půdní organickou hmotu a zadržování vody v půdě. V tomto smyslu byl zkoumán i tzv. "priming effect", jelikož docházelo k urychlení a také zpomalení rozkladu půdní organické hmoty. Zaznamenali jsme rozdílný vliv vybraných koncentrací biopolymeru na půdu a také vliv půdních vlastností na průběh degradace. V neposlední řadě zvýšení enzymatické aktivity jasně naznačovalo vliv přítomnosti biopolymeru na mikrobiální komunitu. Na základě takových zjištění jsme došli k závěru, že přidání biopolymeru vede k dlouhodobému dopadu na řadu funkcí půdního ekosystému.
Extraction of Poly(3-hydroxybutyrate) from Biomas
Jašek, Vojtěch ; Ing. Jiří Švrček, Ph.D (referee) ; Figalla, Silvestr (advisor)
Polyhydroxyalkanoates are a group of biopolymers which occur in cells of microorganisms. These biopolymers can be considered as alternatives to commonly used petrochemical materials such as polypropylene and polyethylene due to their physical and chemical properties. This bachelor thesis focuses on isolation of particular kind of PHA from biomass and contains both experimental and theoretical part. It consists of information about the origin and usage of PHA, challenges and problems of their biotechnological production and mainly various ways of downstream. Experimental part includes comparison of PHA extraction from biomass done by two ester solvents. Studied parameters were molecular weight of the polymer, solvent extraction ability and their resistance against hydrolysis. The main goal of this thesis was to verify the best process conditions of isolation done by nonhalogenated bio-solvent.
Foundry molding mixtures with biopolymer binders
Šindlerová, Eliška ; Janský, Vojtěch (referee) ; Pernica, Vítězslav (advisor)
This work is interested in a new modern solutions in the field of foundry binders. Several biopolymer materials suitable for foundry industry are described and the conditions for using these materials and few examples of casting tests with the use of the biopolymer binders. The main reason why the biopolymer materials are coming back to the industry is a huge amount of strict environmental requirements for the ecological behavior of industrial enterprises and current very bad ecological situation. However this inovative solutions doesn´t have to be only benefits for our environment but the can bring various simplifications to the production process, shortening the time required for preparation or technological breaks, and lower the costs of input material and subsequent waste treatment.
PREPARATION AND APPLICATION OF SOME BIOPOLYMERS, NANOPARTICLES AND NANOFIBRES FOR COSMETICS AND FOOD
Bokrová, Jitka ; Pekař, Miloslav (referee) ; Kráčmar, Stanislav (referee) ; Márová, Ivana (advisor)
The presented doctoral thesis is focused on preparation of nanoparticles and nanofibers with natural active ingredient and testing their biological effects. Modern types of application forms were prepared from biomaterials based on one or more natural polymers. Chitosan particles were prepared from cross-linked polymer using ultrasonication. A mixture of soy lecithin and cholesterol was used for preparation of liposomes. Poly-3-hydroxybutyrate was used for preparation of combined liposomes, too. All liposome particles were prepared by ultrasonication. Nanofibers were obtained from polyhydroxybutyrate using electrospinning. Mixtures of low-molecular antioxidants obtained by extraction from natural sources were used as active ingredients. Different types of teas, barks, herbs, spices, fruits and vegetables were selected as sources of natural antioxidants. Total phenolic and flavonoid content and total antioxidant activity of extracts were determined using spectrophotometrical methods. Obtained natural extracts were subsequently used for encapsulation. Prepared application forms were characterized in terms of their physicochemical properties. Particle size was monitored by dynamic light scattering. Colloidal stability of particles in suspension was determined using zeta potential. Spectrophotometry was used to evaluate the efficiency of encapsulation of active compounds into particles. The morphology of the new type of combined PHB liposomes was monitored by electron microscopy. Chromatography was used for quantification of individual components of particles. Morphology of nanofibers and incorporation of active agent into their structure were monitored using FTIR-ATR spectroscopy and electron microscopy. Afterwards, antimicrobial, cytotoxic and genotoxic effects of preparations were evaluated. It was found that the most suitable types of extracts for liposome preparation are aqueous and lipid extracts of natural antioxidants. Prepared particles showed excellent stability and good encapsulation efficiency. The study confirmed that incorporation of polydroxybutyrate into liposome structure does not reduce neither the colloidal stability of the particle, nor the efficiency of encapsulation process. Antimicrobial and antimycotic effect of preparations against model microorganisms Micrococcus lutues, Serratia marcescens and Candida glabrata was detected. It was found that process of encapsulation increases the inhibitory effect of natural extracts of antioxidants. The safety of preparations was assessed using two human cell cultures: epidermal keratinocytes and HaCaT cell line. Assays of cell viability and plasma membrane integrity were used to determine cytotoxicity of preparations. Low toxicity of liposome particles was confirmed by a series of cytotoxic tests. Obtained data showed that association of phospholipid with PHB polymer does not cause a significant increase in cytotoxicity in human skin cells. Genotoxicity testing on model procaryotic organism confirmed zero genotoxic potential of preparations. The new type of combined particles and polymeric fibers cant thus be used as a carrier for active ingredients, complex natural extracts, antimicrobial agents and many others.
Analysis of biodegradable polymers in soils
Paluchová, Natálie ; Řezáčová, Veronika (referee) ; Kučerík, Jiří (advisor)
Currently, there is a growing interest in usage of biodegradable polymers, regardless of their possible risk of generation of residues. The methods that are used for determination of residues usually include pre-treatment and are expensive and time consuming. Therefore, this bachelor thesis focuses on the development and verification of analytical method that would identify and quantify of biodegradable polymer residues in soils to eliminate the problems arising from sample pre-treatment. Therefore, thermogravimetry, which appears to satisfy the above conditions, was used for the analysis. The area of polymer degradation in three types of soils during thermal oxidation and the effect of polymer on soil during the analysis was investigated. Poly(3 hydroxybutyrate) was chosen to be the representative biodegradable polymer and there were two approaches used to its detection and quatification. The methods were tested for 6 concentrations of poly(3–hydroxybutyrate) (0,1; 0,5; 1; 2; 3; 5 %). The first approach concentrated on the usage of polymer analysis in the presence of a blank (without contaminat), which was subtracted from the blank. Using this method, the temperature interval of polymer degradation and weigh loss changes in this interval were observed. The second method focused on a soil universal model, that allows the identification and quatification of samples when the blank is not present. The blank is simulated by 19 equations, that allow the identification of intervals, in which degradation of samples occurs and also it provides the possibility to determinate the type of the polymer. However, the principle component analysis indicated that the method is sensitive to the type of soil and therefore it needs adjustments. Samples were incubated for 4 months, to verify the sensitivity of the method, in case of partial or complete decomposition of samples by soil microorganisms,. Thereafter, the concentrations of poly(3-hydroxybutryrate) in soil determined by respirometry and thermogravimetry were compared. The results indicated that accelerated degradation caused by poly(3-hydroxybutrylate) or contamination of the sample with the surrounding atmosphere during respiration may have occurred. Residual poly(3–hydroxybutyrate) was thermogravimetrically verified and results were compared to respirometry. According to the results it can be observed that there was an interaction between the soil organic matter and biota or contamination of the sample with the surrounding atmosphere. The results revealed, that there is a possibility of determination of biodegradable polymers in soils by thermogravimetric analysis. There are good results using the blank method, but it is limited by the existence of a blank. The method that is using the soil universal model (without blank) has a great potential in the future, but adjustments still need to be done.
Preparation and Characterisation of Polyelectrolyte Complexes in the System Dextran-Surfactant
Klímová, Eliška ; Krouská, Jitka (referee) ; Kalina, Michal (advisor)
This bachelor thesis deals with the study on preparation and characterization of the polyelectrolyte complex formation in the dextran-surfactant system. The aim of the thesis was the investigation of the influence of the ionic strenght on the formation of the interactions in the studied system. For these purposes, components having opposite charges (DEAE-dextran hydrochloride and anion-active sodium dodecyl sulphate) were selected. For individual measurements mainly the methods of light scattering, dynamic and electrophoretic light scattering in particular, have been used. In the thesis have been studied interactions and aggregation concentrations of individual components having the potential to form polyelectrolyte complexes. It was verified in all the studied samples, by measuring the intensity of scattered light and the size of Z-diameter of particles, that the increase in sizes of particles is caused by the formation of these complexes. There were also measured additional characteristicts of the system such as pH or conductivity. Their dependences provide comprehensive view on the formation of complexes in studied system and can be utilized for other measurements and possible future applications, especially for purposes in medical applications.
Use of microcalorimetry in the study of hydration of biopolymers
Bola, Tomáš ; Smilek, Jiří (referee) ; Krouská, Jitka (advisor)
This master thesis deals with the using of microcalorimetry in the study of hydration of biopolymers. Lactose has been selected together with the other biopolymers although it is not among biopolymers but disaccharides. Selected biopolymers are alginate, dextrane, chitosan and hyaluronan of two molecular weights. Lactose has been selected for these purposes mainly because it is a model example to determine whether or not the reaction to moisture between the other samples and the saturated salt solution occurs. The biopolymer hydration study, as opposed to the commonly used perfusion calorimetry method using the possibility of measuring with adjustable moisture has been used an isothermal microcalorimetry method where at two constant temperatures the reaction of the sample to the different moisture released by the saturated salt solution was monitored.
Ultrasonic biopolymer characterisation by hysteresis quantification
Zatloukalová, Jana ; Tokar, Daniel ; Kopecká, Karolína ; Převorovský, Zdeněk
Nonlinear characteristics are advanced indicators of the structure of viscoelastic materials. In this contribution, we focus on biopolymers (such as articular cartilage and skin tissue), and their typical amount of energy lost by mechanical loading/unloading represented by a hysteresis curve. For hysteresis modeling we use the PreisachMayergoyz space model, and restricted power distribution (Guyer extended distribution). Besides the power distribution parameters, the stress protocol is required as an input to obtain the modeled hysteresis curve, and to compare with experimental results. Knowing the experimental curve, an iterative numerical procedure for identification of true density function of opening and closing pressures was applied, and an optimization algorithm sought for the best (characteristic) distribution parameters for the specific soft tissue. Material properties can be evaluated based on the described quantification, and potentially used for medical purposes and healing or cosmetics treatment evaluation.
Hydration of biopolymers
Šméralová, Ester ; Smilková, Marcela (referee) ; Klučáková, Martina (advisor)
Presented bachelor's thesis focuses on the study of hydration of selected biopolymers – humic acids, chitosan, hyaluronic acid (low molecular weight and high molecular weight) and dextran. Thermogravimetric analysis TGA is used t determine the original moisture content of the samples. Two calorimetric methods were used for subsequent observations of changes in their chemical and mechanical properties in the presence of water – differential scanning calorimetry DSC and perfusion calorimetry.
Biotechnological production of selected biopolymers employing Haloferax mediterranei
Strečanská, Paulína ; Pernicová, Iva (referee) ; Obruča, Stanislav (advisor)
Aim of this bachelor thesis is to study of production of selected biopolymers, polyhydroxyalkanoates (PHA) and extracellular polysaccharides (EPS) by Haloferax mediterranei. The first part contains theoretical background including properties of biopolymers, advantages and purposes of commercial production, characteristics and positive aspects of cultivation of extreme halophile archaea Haloferax mediterranei. The experimental part is focused on study of effects of concentration of waste substrates, such as proteolytic whey hydrolysate and feather hydrolysate on PHA and EPS production. The effect of medium volume and its correlation with acceess of oxygen on biopolymer production were studied as well. PHA, in particul copolymer P(3HB-co/3HV) was analysed by gas chromatography with FID detection. The content of 3HV in PHA to 15,09 % was achieved using medium which contains 25 % proteolytic whey hydrolysate without glucose supplementation. Medium with 10 % of feather hydrolysate and 10 % of feather hydrolysate with 30 g/l glucose proved to be suitable in volume 50 ml in 250 ml Erlenmeyer flask. Haloferax mediterranei was able to produce biomass and accumulate PHA using protein substrate without need of saccharide supplementation.

National Repository of Grey Literature : 40 records found   beginprevious21 - 30next  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.