National Repository of Grey Literature 63 records found  beginprevious21 - 30nextend  jump to record: Search took 0.00 seconds. 
Mechanical and Transport Properties of Hybrid Hydrogel Systems
Klímová, Eliška ; Sedláček, Petr (referee) ; Kalina, Michal (advisor)
This master´s thesis deals with the study on mechanical and transport properties of hybrid hydrogel systems. Considering applications of hydrogels, especially in chemical industry, pharmacy, or eventually medical applications, for the study gellan and alginate-based hydrogels were selected. In order to compare individual characteristics physical and hybrid hydrogels were prepared. Gellan hydrogels were prepared in deionization aqua solution, calcium chloride dihydrate and tween 80 solution. Alginate hydrogels were prepared in calcium chloride dihydrate solution as well, and polyacrylamide with N,N´–methylenbisacrylamide. For the study of mechanical properties moisture analyser and rheology measurements were selected. Transport properties were studied using the diffusion experiments combined with UV-VIS spectroscopic detection. Concluding of this thesis is summarization of measured values, which provides comprehensive review of the problematics. It was discovered that the conveniently selected concentrations of structural components of hydrogel matrix and the additives can influence both the mechanical as well as the transport properties of studied hydrogels.
Encapsulation of selected natural extract for food application.
Vyskočilová, Terezie ; Kočí, Radka (referee) ; Márová, Ivana (advisor)
This diploma thesis deals with encapsulation of natural extracts. In the theoretical part the methods of encapsulation, materials for particle preparation, as well as application of encapsulation techniques in food industry were described. In experimental part selected natural extracts of propolis, green barley and probiotics were characterized. There substances were encapsulated into alginate and chitosan. In the total of 25 types of prepared particles long-term stability in some model physiological conditions as well as in four different model foods was evaluated. Additionally, stability of selected particles in several real milk-based products was followed too. The stability of particles was determined spectroptohometrically. In natural extract a content of polyphenols, proteins, chlorophylls, as well as total antioxidant activity were analysed. To analysis of probiotics optical and fluorescence microscopy were used. In propolis and green barley antimicrobial activity was tested too. Moreover, in the sample of propolis also cytotoxic assay was applied. Agar-chitosan was chosen as the best shell material for propolis due to its optimal stability in model physiological conditions as well as model foods. Liposomes were evaluated as unstable and were not recommended for further application. As the suitable shell material for powdered green barley starch-alginate (rate 1:4) and agar-chitosan were proposed, while the second one showed better stability for released proteins. Agar-chitosan shell material was usable for fresh green barley too. For probiotics encapsulation alginate or alginate-starch were chosen because of their porosity and possibility of nutrients diffusion. In real foods the best results were reached with application of probiotic particles into milk. Coencapsulation of powdered barley and probiotics did not confirm inhibition of culture growth. Neither the antimicrobial effect of propolis and barley nor the cytotoxic effect of propolis were confirmed.
Encapsulation of active substances into nanofibers and possibilities of their application
Procházková, Lucie ; Pernicová, Iva (referee) ; Skoumalová, Petra (advisor)
The master thesis was based on the optimization of the production of nanofiber covers and to gaine the product for subsequent functional use. The production of nanofiber covers was made by electrospinning and forcespinning from selected materials. Polyhydroxybutyrate, gelatin, chitosan and alginate were used as starting materials. After successful optimization, these materials were enriched with active ingredients ampicillin and ibuprofen for the functionalized use of covers for more effective wound healing. The theoretical part was focused on the issue of skin, healing processes, types of wounds and nanofibers, the characterization of selected starting materials for the formation of nanofibers was also mentioned. The practical part was based on the lengthy optimization of the preparation of fiber covers and later enriched with active ingredients. Furthermore, combined covers made of different materials with contents of both active ingredients were designed. This was followed by the characterization of all prepared covers from the point of view of stability in the short and long term. The gradual release of active ingredients was determined spectrophotometrically and by hifh performance liquid chromatography. It was also important to determine the antimicrobial activity of selected active substances. At the end of all testing, combined coatings containing both active ingredients were used for safety testing with human keratinocyte cells (HaCaT). Safety testing was based on determining the viability of human cells using the MTT test, to verify the LDH test. A scratch test was also performed, a wound healing test after the application of devised combined covers.
Preparation and characterization of wound dressings
Dzurická, Lucia ; Márová, Ivana (referee) ; Skoumalová, Petra (advisor)
The diploma thesis if focused on the study of bioactive hydrogél and nanofiber wound dressings composed of natural biopolymers, which were functionalized by active compounds in the form of analgesic, antibiotics and enzymes. Hydrogél wound dressings were constituted from alginate and chitosan and nanofibers were created from polyhydroxybutyrate. The following 7 active compounds were selected to be added to the wound dressings: ampicillin, streptomycin, ibuprofen, papain, bromelain, collagenase and trypsin. In the theoretical part the structure of the skin and types of wound injuries were described. This part also talks about types of wound dressing and their applications, as well as treatment of skin wounds using enzymes and compounds with analgesic and antimicrobial properties. In addition, this section describes safety assays, in particular cytotoxicity assays on human cells. At the beginning of the experimental part, the process of preparation of hydrogél wound dressing was optimised. Subsequently, the dressings were enriched with active compounds and the rate of gradual releasing of the substances into model environment was monitored. In the case of enzymes, their proteolytic activity was also tested after their incorporation to the wound dressings. Furthermore, the prepared bioactive wound dressings were analyzed for possible cytotoxic effect on human keratinocytes. Finally, the wound dressing with combined content of active substances was created and also characterized for the rate of substance release, proteolytic activity and cytotoxicity. Antimicrobial activity of this wound dressings, against two selected strains of microorganisms: Escherichia coli and Staphylococcus epidermidis, was also evaluated.
Development and characterization of hydrogel carriers for modern agricultural applications
Mai, Thuy Ha ; Kalina, Michal (referee) ; Sedláček, Petr (advisor)
The bachelor thesis is focused on characterization of hydrogel carriers and their application in agriculture. Entrapment of active phase within the hydrogel matrix would allow release of its content in controlled rate. The theoretical part describes encapsulation techniques and suitable biocompatible materials involved in encapsulation. For the experimental part, the release of soil bacteria Cupriavidus necator H16 from alginate matrix was examined. The focus was on the release rate of bacteria via diffusion and later, on the release rate of bacteria encouraged by chemical or enzymatic reagents. Further modification of carrier was suggested by adding hydrophobic barrier composed of polyhydroxybutyrate (PHB). The modified alginate beads seemed to be more resistant toward enzymatic or chemical agents, thus the process of the release was to some extent suppressed. This fact might suggest PHB as a possible vessel for optimization of controlled release system of hydrogel carriers.
Hydrogel carriers of microorganisms for modern environmental aplications.
Súkeník, Martin ; Slaninová, Eva (referee) ; Sedláček, Petr (advisor)
This bachelor thesis deals with the optimization of cultivation and gelation procedures by bacterium Azotobacter vinelandii, which belongs to a PGPR group, capable of synthesis of intracellular polyhydroxyalkanoates and extracellular alginate. The alginate produced by the bacteria is crosslinked with a calcium chloride solution to form a hydrogel carrier containing the described bacterium. This unconventional concept simplifies bacterial encapsulation and production of hydrogel carriers, furthermore expands its usability in modern environmental applications. In the first part of this thesis, three strains (DSM 85, 87, 720) were selected to measure a concentration of produced alginate, its molecular weight was determined by a SEC-MALS technique and M/G ratio was analysed by infrared spectroscopy. The Azotobacter vinelandii strain DSM 87 reached the highest concentration of the alginate (4.9 ± 0.6) g/l by gravimetric determination on the 5th day of cultivation. The concentration of produced PHB ranges from 48 to 6 % of CDW, which was determined by gas chromatography. Nevertheless, the strain DSM 720 showed the best gelation properties and was used in the second part of this thesis for further optimization of the cultivation process, and for the analysis the formation of gelation procedure under different temperatures, gelation time and concentrations of crosslinking solution. The formed gels were compared by rheological measurements of amplitude and frequency tests.
Self-encapsulation of Plant Growth Promoting Rhizobacteria as a way towards new generation of bioinoculants
Gašparová, Dominika ; Obruča, Stanislav (referee) ; Sedláček, Petr (advisor)
This bachelor thesis focuses on Plant Growth-Promoting Rhizobacteria that can be used as a suitable ecological alternative to conventional fertilizers. However, most of today's approaches to incorporating PGPR into the process of soil fertilization are convoluted and costly. Crosslinking of alginate self-produced by PGPR offers a new possibility of plantgrowth- promoting bacteria encapsulation. The aim of this thesis consists of preparing gel matrices with incorporated bacteria, followed by testing the bacteria's viability and quantity. Firstly, experiments were carried out to determine various properties of gels produced by the chosen representative bacteria Azotobacter vinelandii. These properties include the molecular weight of alginate (with the highest molecular weight of strain CCM 289 (329,78± 6,8) kDa), the alginate's amount in the gel, the content of PHB (34%-44% CDW), and the gel's overall rheological properties. The complex modulus (as a representation of rheological properties) of the firmest gel reached the value of 13,34 kPa. The bacteria content was examined by flow cytometry, the CFU method, and spectrophotometry. The viability of bacteria was determined by analyzing the fluorescence intensity via fluorescent dyes (propidium iodide, fluorescein diacetate, rhodamine 123, calcein AM), then by using the CFU method, and also via the plate method. Furthermore, the effects of various factors such as different pH levels (pH 3, 7, and 10) or adding the specific alginatedegrading enzyme alginase were also examined. Releasing of the bacteria was observed over the course of seven days using flow cytometry and the CFU method. The plate method proved the bacteria's survival after gelation and without any source of carbon. The largest disintegration of gels occurred in acidic pH. Moreover, the effect of alginase on crosslinked bacterial gels and synthetic alginate were very similar. The survival of bacterial cultures in gel and their continuous release are significant findings in the development of novel bioinoculants based on this new concept.
Dry gel forms - aerogels, xerogels - preparation, properties and potential use.
Sedlář, Marian ; Smilek, Jiří (referee) ; Sedláček, Petr (advisor)
The content of this bachelor thesis was to find out what influence has the drying of hydrogel on its internal structure on an appropriate model hydrogel system. In the theoretical part of this thesis selected methods of structural analysis that are commonly used for characterization on gels in their original hydrated state and in dry state were described. In the practical part, agarose based hydrogels with different concentrations and with various additions of polyelectrolytes were chosen as the model hydrogel system. Cryo-scanning electron microscopy and turbidimetry were used for the structural analysis of hydrogels. For the dry gels, scanning microscopy and mercury porosimetry were used. The obtained data and results for our model system can be use in analyse of other hydrogel systems and their dry forms.
Adhesion Properties of Semi-IPN Hydrogels
Candráková, Simona ; Sedláček, Petr (referee) ; Kalina, Michal (advisor)
This Diploma thesis deals with optimization of the hydrogel preparation with various additions of substances affecting adhesion, studying the adhesion of prepared hydrogel systems and modifying their adhesion properties. Prepared hydrogels were agarose, alginate and gellan polymer systems with additions of acrylic acid, acrylamide, calcium chloride and Tween 20. The experimental part of the diploma thesis focuses first on optimizing the preparation of individual hydrogels, from which, according to certain criteria, suitable representatives were selected to study adhesion and its controlled modification. Agarose and gellan hydrogels were selected as suitable representatives, which were then used in rheological measurements. Based on these measurements, the effect of the adhesive force and the adhesive work of individual materials was evaluated. It was found that the best adhesion properties of the materials used are unadjusted hydrogels, in the case of hydrogels with the addition of another substance, a negative effect on adhesion was observed, when the adhesion force was reduced and also the adhesion work was reduced.
Encapsulation of soil bacteria in hydrogel carriers
Orišková, Sofia ; Smilek, Jiří (referee) ; Sedláček, Petr (advisor)
The goal of this bachelor thesis was both to review existing literature regarding the topic of inoculation of soil bacteria and test a relevant encapsulation method and optimize it. The evaluation process involved the study of various encapsulation techniques that involve hydrogel carriers suitable for agronomic purposes. Encapsulation allows controlled release of soil bacteria, and protects and stabilizes it, while ensuring longer shelf life. For the practical testing, Cupriavidus necator H16 was chosen as a nitrogen fixing bacteria for the inoculation. Through an ionic gelation method, it was encapsulated into alginate carriers, forming matrix microcapsules. Sodium alginate reacts with the cross-linking agent calcium chloride to form the capsules. The impact on the quality of the product was tested through several variables. What was revealed was that molecular weight of alginate was proven to have a significant impact. Alginate with higher molecular weight was shown to be suitable for the given system. The most desirable environment was distilled water or a TRIS-HCl buffer. However, the TRIS-HCl was unsuitable in cases of retrieving a dry product by lyophilization. Eventually, the viability of encapsulated cells was examined, and it was proven that encapsulated bacteria endure the process of encapsulation in the above-mentioned environment and they were gradually released from the carrier.

National Repository of Grey Literature : 63 records found   beginprevious21 - 30nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.