National Repository of Grey Literature 37 records found  1 - 10nextend  jump to record: Search took 0.00 seconds. 
Measured and modelled fluxes of tropospheric ozone in mountainous Norway spruce forest
Juráň, Stanislav ; Zapletal, Miloš ; Večeřa, Zbyněk ; Cudlín, Pavel ; Urban, Otmar
Tropospheric ozone fluxes (O3) were measured in Norway spruce forest at Bily Kriz, Czech Republic by eddy covariance technique. Within-canopy concentration gradient was measured by APOA-370 analysers (Horiba, Japan) in 7m, 25m and 30m above ground. Fluxes of O3 were modelled from the concentration gradient by applying Inverse Lagrangian Transport Model (Raupach, 1989). Next, O3 fluxes were modelled on the basis of resistent analogy. Ozone flux measured by eddy covariance technique amounted up to 1.19 nmol m-2 s-1 on daily average and the lowest -0.75 nmol m-2 s-1. Studied forest stand was net sink for ozone in 7.14 mmol m-2 per day (=0.343 g m-2 per day). The highest ozone emission peaked during noon hours, suggesting closure of stomata due to low air temperature and ozone production due to sufficient radiation. Both models proved to be imprecise when compared to measured data in autumn-winter transition period.
Methods of detection of fungal diseases applicable in plant phenotyping and remote sensing
Klem, Karel ; Veselá, Barbora ; Holub, Petr ; Urban, Otmar ; Mezera, J.
This methodology summarises findings from a comparison of three perspective methods of fungal disease detection applicable for remote sensing and plant phenotyping of fungal disease resistance. These methods are spectral reflectance, infrared thermal imaging, and blue-green fluorescence imaging. On the example of winter wheat infection with powdery mildew, stripe rust and brown rust the strengths and weaknesses of individual methods were demonstrated. From these results it is evident that all three methods are potentially applicable for non-destructive fungal disease detection, but their practical use may vary. Testing of spectral reflectance indices for the detection of fungal diseases showed particularly the high detection reliability of the red-edge and green band based spectral vegetation indices. Infrared thermal imaging has shown high detection accuracy for powdery mildew and brown rust, but lower for stripe rust. Blue-green fluorescence and thermal imaging seems to be also a very promising tools for evaluating the intensity and spatial distribution of infection on a leaf level.
Anthocyanins in plant leaves: protective function and spectroscopic detection
Nikodymová, Michaela ; Albrechtová, Jana (advisor) ; Urban, Otmar (referee)
Plants have to cope with the change in the various environmental factors, the change of these factors means stress for plants. Stress factors can cause damage that lead to inhibition of growth and photosynthesis, resulting in the extreme cases in the death of the whole organism and negatively affect farm yields. Plants have to develop defensive mechanisms, including the accumulation of anthocyanins in leaves. The aim of the present review is to summarize the knowledge about the influence of stress factors on the accumulation of anthocyanins in leaves and about the function of anthocyanins in the protection. Anthocyanins most often act as antioxidants that react with ROS and inactivate them, they can also act as filters against UV radiation and as a protection against herbivores. Further, there are summarized the knowledge about spectral methods of detection of anthocyanins in leaves with emphasis on non-destructive detection methods. Spectral methods allow the analysis of anthocyanins based on the interaction of the leaf and its chemical components with the incident radiation. The most commonly used method is UV-VIS spectrophotometry. In order to study pigment change in leaves during ontogenetic development, non-destructive methods of pigment detection should be used. Suitable method can allow us...
Modulation of ozone flux in a mountain spruce forest under different cloud cover
Juráň, Stanislav ; Fares, S. ; Urban, Otmar
Ozone (O3) fluxes were modelled from a concentration gradient in a Norway spruce forest at the Bílý Kříž experimental station for years 2012–2016. Daily and seasonal O3 depositions were calculated separately for days with cloudy, partly cloudy, and clear sky conditions. The hypothesis that overcast conditions modulate O3 flux in the forest ecosystem via controlled stomatal conductance is tested. Indeed, the highest stomatal conductance followed by the highest O3 deposition was found during partly cloudy and cloudy sky conditions in all seasons.
Effect of elevated CO2 on morphological and photosynthetic parameters in two understory grass species in Beskydy Mountains
Holub, Petr ; Klem, Karel ; Urban, Otmar
We transplanted two grass species, Calamagrostis arundinacea and Luzula sylvatica, to the understory of\na 10-year-old experimental mixed forest exposed to ambient (385 μmol CO2 mol–1, AC) and elevated (700\nμmol CO2 mol–1, EC) atmospheric CO2 concentration using a glass dome facility. Effects of EC on plant\nmorphology and photosynthesis were examined after three years of treatment. We tested the hypotheses\nthat shade-tolerant species can profit from EC even at low light conditions and that relatively low accumulation\nof assimilates at such light conditions will not cause CO2-induced down-regulation of photosynthesis.\nWe expected that EC can substitute insufficient light intensities under the tree canopy and lead to both\nhigher biomass production and survival of plants in deep forest understories. The typical shade-tolerant\nspecies L. sylvatica exhibited positive acclimation under EC allowing higher light use efficiency under subsaturating\nlight intensities as compared to plants grown under AC. In contrast, C. arundinacea showed\nhigher stimulation of growth and photosynthetic rates by EC mainly under saturating light intensities at\nthe beginning of the growing season, when the forest leaf area is not fully developed and the open canopy\nallows a greater proportion of incident light to reach the understory. Our data indicate that growth and\nphysiological responses of EC plants in forest understories are species specific, differ from responses of\nsun-exposed plants, and depend on degree of shading.
Interactive effect of UV radiation and CO2 treatment on extractable volatile organic compounds from European beech leaves
Večeřová, Kristýna ; Pernicová, N. ; Klem, Karel ; Urban, Otmar
The main objective of this experiment was to investigate the combined effect of different UV treatments\nand elevated CO2 concentration on monoterpene and methyl salicylate (MES) content in leaves of\nEuropean beech during the growing season. Plants were grown under ambient (AC, 400 μmol mol–1) and\nelevated (EC, 700 μmol mol–1) CO2 concentrations and three UV radiation treatments (ambient – UVamb,\nexcluded – UV-, and enhanced – UV+). Leaves collected from July to September were extracted in cold\nheptane to determine volatile organic compounds content using gas chromatography. Our results show\nthat AC plants had higher total content of extractable monoterpenes and MES than did EC plants over\nthe whole growing season and irrespective of UV treatment. Limonene, 2-bornene, and ester MES were\nthe most abundant volatile compounds in beech leaves. The highest contents of 2-bornene and MES were\nfound under the UV- treatment and AC. Contents of α-pinene, β-pinene, and carene decreased during the\ngrowing season while the content of limonene increased.
Water-use efficiency of winter wheat under heat and drought stress
Hlaváčová, Marcela ; Klem, Karel ; Novotná, Kateřina ; Rapantová, Barbora ; Urban, Otmar ; Hlavinka, Petr ; Smutná, P. ; Horáková, V. ; Škarpa, P. ; Trnka, Miroslav
Because such extreme weather events as dry spells and heat waves are expected to occur more frequently\ndue to climate change, the issue of appropriate water management for sustainable agricultural production\nis increasingly important. This study focuses on wheat, the second most widely grown cereal in the world\nand the most common cereal in European countries. The study assesses the effects of short periods (3 and\n7 days) of high temperatures (26°C as a control, 32°C, 35°C, and 38°C as daily temperature maxima from\n12:00 to 14:00) and drought stress at different developmental stages (DC 31 – beginning of stem elongation,\nDC 61 – flowering, and DC 75 – early grain filling) on water-use efficiency (WUE) in winter wheat\ncultivar Tobak. This cultivar is one of the most widespread winter wheat cultivars in Czech Republic fields.\nThe analysis of WUE showed that the cv. Tobak plants were able to withstand drought stress conditions\nthrough increased WUE. In contrast, wheat plants were stressed more markedly if exposed to higher temperatures\nand drought in combination. Generally, the wheat plants were most sensitive to drought at DC\n31.
Anatomical study of shade and sun European beech leaf under elevated CO2.
Horská, Jana ; Lhotáková, Zuzana (advisor) ; Urban, Otmar (referee)
The present Master thesis focuses on evalution of CO2 concentration and irradiance on selected leaf anatomical parameters of European Beech (Common Beech) Fagus sylvatica L.. The process of photosynthesis is remarkably determined by numerous extrenal factors, among them by atmoshperic CO2 concentration and irradiance and is closely correlated with leaf anatomical parameters. One of these most important anatomical parameters affecting the net assimilation rate is an internal leaf surface, which corresponds to mesophyll area avialable for gas exhcange. Experimental material of the study was sampled from the leaves of juvenile trees of F. sylvatica planted in 2005 and growing under ambient (390 ppm, AC) and elevated (700 ppm, EC) CO2 concentrations on the experimental site of the Global Change Research Center AS CR at Bílý Kříž in the Beskydy Mountains. Sun and shade leaves were sampled from trees of both CO2 treatments in two seasons 3 years apart (2009 and 2012). To determine leaf anatomical parameters, the stereological methods were applied, which yield unbiased estimation of measured parameters, particularly the Fakir method for internal leaf surface determination. The EC effect was observed on the leaves sampled in 2009 only in the decrease of proportion of intercellular spaces in mesophyll. In...
Carbon sequestration by forest ecosystems in canging climate.
Hlaváčková, Lucie ; Lhotáková, Zuzana (advisor) ; Urban, Otmar (referee)
The global carbon cycle is in the focus of the scientists' interest, because understanding carbon sinks and their relationships can show the solutions of problems related with increasing CO2 concentration in the atmosphere in the future. I focused on the role of forests ecosystems in this carbon cycle. All forests cover almost one third of the Earth's land area. By photosynthesis they bind big part of atmospheric carbon to their biomass. Sink strength of forest can differ according to the type of biome, forest stand age and actual climatic conditions. Forest biomes can be generally divided according to the latitude to three groups: tropical forest biomes, temperate forests and boreal forests. The size of carbon stock decreases in this order. Other parameters, such as net primary production and respiration differ in dependence on the particular ecosystem. Tropical rain forests represent great carbon stock, but their deforestation causes massive C emissions back to the atmosphere. Boreal forests aren't considered as important carbon sink, but they influence local climate. Some speculations can also appear about the old forests. It is possible to find authors, who claims, that old forests are no more carbon sinks, so that their carbon balance is neutral. Many surveys prove that they bind less carbon...
Combined effect of temperature and CdO nanoparticles treatment on Picea abies
Večeřová, Kristýna ; Mikuška, Pavel ; Oravec, Michal ; Kozáčiková, Michaela ; Pompeiano, Antonio ; Coufalík, Pavel ; Urban, Otmar
Three-years old seedlings of Picea abies were pre-treated under two different\ntemperatures (20x35 °C) and subsequently exposed to elevated concentration of CdO\nnanoparticles (CdONPs). Two-week exposure to airborne CdONPs of ecologically\nrelevant size and concentration significantly reduced photosynthetic light use efficiency\nin plants as well as contents of photosynthetic pigments and saccharides. In contrary,\namino acid content was increased under CdONPs. These changes were further\nmodulated by previous growth temperature.

National Repository of Grey Literature : 37 records found   1 - 10nextend  jump to record:
See also: similar author names
13 URBAN, Ondřej
13 Urban, Ondřej
2 Urban, Oto
Interested in being notified about new results for this query?
Subscribe to the RSS feed.