National Repository of Grey Literature 38 records found  1 - 10nextend  jump to record: Search took 0.00 seconds. 
CMOS Transconductance Amplifier Design
Zelinka, Miloslav ; Bajer, Arnošt (referee) ; Musil, Vladislav (advisor)
The work deals with question of design and simulation of integrated analog circuits in CMOS technology. The general aim of my thesis is to design transconductance amplifier and analyze its frequency response and stability in feedback systems. The two stage operational – transconductance amplifier with compensation capacitor is presented in my work. This compensational method of pole splitting used together with the nulling resistor prevents amplifier from oscillation. This work also deals with circuit solution of computing amplifier. It verifies compensation influence of frequency for phaser and frequency characteristics.
Fully-differential frequency filters with nontraditional active elements
Dvořák, Jan ; Koton, Jaroslav (referee) ; Jeřábek, Jan (advisor)
Bachelor's thesis deals with designs of fully-differential frequency filters which operate in current mode where it is possible to control their parameters by change the transconductance or the amplification. The first part divides and describes in general frequency filters. Furthermore, there are described active elements together with their simple simulation models. The second part describes the design of frequency filter by M-C signal-flow graph and methods of transforming final circuit to fully-differential structure. Next part presents several structures of the second-order filter with their simulations in non-differential and fully-differential forms. Last part presents designs of boards of printed circuits and measurement results of two chosen circuits.
Functional generator
Kopecký, Petr ; Dostál, Tomáš (referee) ; Slezák, Josef (advisor)
Functional generators are equipments that provide electrical signals of variable parameters. They are classified by various criterions – by the type of produced signal or according to the type of self realization of generator. This bachelor thesis deals with the possibilities of realization generators with harmonic, triangular and rectangular signals. It focus on the project of generator in compliance with gained experience and knowledge. The practical part of the thesis is focused on realization of the generator. The function of the generator is checked during the measurements.
Electronically reconfigurable frequency filters
Gajdoš, Adam ; Langhammer, Lukáš (referee) ; Jeřábek, Jan (advisor)
The aim of the thesis was design of reconnection-less and electronically reconfigurable filters of SISO type with non-traditional active elements. Adjustability of bandwidth or quality factor is also required. First part of the thesis deals with theoretical analysis of filters, their operation modes and design of frequency filters using Signal-flow graph method aswell. Last but not least, electronical reconfiguration of transfer function and parasitic analysis was discussed. Another part describes active elements used in the practical part of thesis. Behaviors and design of active elements using existing circuits (e.g. UCC,EL2082) are described and their transformation into the Signal-flow graph form too. In the practical part five reconnection-less and reconfigurable filters of SISO type was designed using SNAP program. Simulations were done using Orcad program with ideal and real simulation models of active elements. Last part deals with filter design in EAGLE and experimental measurement.
Design and simulations of low-power electronically controllable functional generators
Kolenský, Tomáš ; Dvořák, Radek (referee) ; Šotner, Roman (advisor)
The aim of the thesis is to get acquainted with the principle and function of functional generators. Furthermore, with their design using active elements that can be electronically controlled. The design and simulation results are presented in Chapter 4, which also shows schematics of simulated and measured circuits.
Synthesis of differential filtering structures with complex active elements
Pánek, David ; Kubánek, David (referee) ; Langhammer, Lukáš (advisor)
This document is focused on already existing single-ended frequency filters with modern active components working in current mode and their modification into fully-differential ended form. After the modification both versions were compared between each other. The first part informs about problems concerning analogue frequency filters. The second part deals with used active components - MO-CF (Multiple Output Current Follower), BOTA (Balanced transconductance amplifier), UCC (universal current conveyor), VDTA (Voltage differencing transconductance amplifier), CDTA (Current differencing transconductance amplifier) and VDCC (voltage differencing current conveyor). Four circuits have been chosen and transformed into their differential form. Two circuits have been chosen and realised into PCB and then practicaly measured in a laboratory. The last part is a summary of simulations and measured results and check of circuits behavior result.
Analog studio compressor with adustable band-pass filter
Ledvina, Matej ; Kratochvíl, Tomáš (referee) ; Šotner, Roman (advisor)
This thesis deals with design of a dynamic range compressor complemented by an adjustable band pass filter. This device features wider usability than a standard dynamic compressor while simultaniously being able to replace specialized ones. Presented solution utilizes voltage controlled filters of KHN topology to limit the bandwidth of either the processed signal or the controling signal and integrated voltage controled amplifiers for adjustment of dynamics. The design requirements are verified by computer simulation.
Analysis of filter structures with controllable amplifiers
Pánek, David ; Langhammer, Lukáš (referee) ; Polák, Josef (advisor)
This bachelor thesis is focused on simulations and practical realizations of already existing frequency filters with modern active components in current mode. New simulation ABM model (Analog Behavioral Model) of DACA (Digital Adjustable Current Amplifier) element was used in the simulations. The first part informs about problems concerning analogue frequency filters. The second part deals with used active components - DACA (Digital Adjustable Current Amplifier), MO-CF (Multiple Output Current Follower), BOTA (Balanced transconductance amplifier) and UCC (universal current conveyor). Four circuits have been chosen and implemented into PCB (printed circuit board) on the basis of simulation results. The first circuit tunes the quality factor with help of DACA component. The second circuit tunes the natural frequency and quality factor with help of DACA components. The third and the fourth circuits are simulated and implemented in differential and also in single ended forms. These circuits tune the natural frequency with help of the same set of current amplification by DACA components. The last part is summary of simulation’s and practical measurement‘s result of this project.
Design of electronically reconfigurable filtering structures with modern active elements
Prát, Marek ; Kubánek, David (referee) ; Langhammer, Lukáš (advisor)
The aim of master's thesis was design of electronically reconfigurable filters. Adjustability of pole frequency or quality factor is possible. First part of thesis deals with theoretical analysis of filters, their operation modes, design of frequency filters using Signal-Flow graph method and parasitic analysis. The next part describes active elements used in thesis. In a third part, three reconfigurable filters are described and designed and their simulations and parasitic analysis are made. Last part deals with filter design in EAGLE and experimental measurement.
Multifunctional analog frequency filters
Žůrek, Radomil ; Koton, Jaroslav (referee) ; Minarčík, Martin (advisor)
Main topic of this bachelor thesis are the frequency filters and their application. It presents multifunction frequency filter circuits with focus on active circuit elements like current conveyors (GCC), voltage conveyors (GVC) and transconductance amplifiers (OTA), which operate in both voltage and current modes. Then it presents the outcomes of designing 26 second order frequency filters, all operating in both voltage and current modes. It discusses in theory the problematics of M-C graph design, which is graphics-based analogy of voltage and current incidental matrices. Selected circuit designs are examined as examples with their transfer functions determined and results presented as module frequency characteristics. Individual M-C graphs (signal flow graph) are designed for each filter circuit. In conclusion are summarized the characteristics of M-C graphs and their suitable applications.

National Repository of Grey Literature : 38 records found   1 - 10nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.