National Repository of Grey Literature 63 records found  1 - 10nextend  jump to record: Search took 0.01 seconds. 
Deep Neural Networks Approximation
Stodůlka, Martin ; Mrázek, Vojtěch (referee) ; Vaverka, Filip (advisor)
The goal of this work is to find out the impact of approximated computing on accuracy of deep neural network, specifically neural networks for image classification. A version of framework Caffe called Ristretto-caffe was chosen for neural network implementation, which was extended for the use of approximated operations. Approximated computing was used for multiplication in forward pass for convolution. Approximated components from Evoapproxlib were chosen for this work.
Evolutionary Design of Image Classifier
Koči, Martin ; Bidlo, Michal (referee) ; Drahošová, Michaela (advisor)
This thesis deals with evolutionary design of image classifier with help of genetic programming, specifically with cartesian genetic programming. Thesis discribes teoretical basics of machine learing, evolutionary algorithms and genetic programming. Part of this thesis is described design of the program and its implementation. Futhermore, experiments are performed on two solved tasks for the classification of handwritten digits and the classification of cube drawings, which can be used to determine the rate of dementia in Parkinson's disease. The best designed solution for digits is with AUC of 0.95 and for cubes 0.86. Designed solutions are compared by other methods, namely convolutional neural networks (CNN) and the support vector machines (SVM). The resulting AUC for the classification of digits for both CNN and SVM is 0.99, for cubes CNN has a final AUC 0.81 and SVM 0.69. The cubes are then compared with existing solution, which resulted in AUC 0.70, so that the results of the experiments show an improvement in the method used in this thesis.
Processing of X-Ray images in studying jawbone diseases
Kabrda, Miroslav ; Šmirg, Ondřej (referee) ; Mikulka, Jan (advisor)
The subject of this thesis is a method proposed for automated evaluation of the parameters of X-ray of cystic disorders in human jawbones. The main problem in medical diagnostic is the low repeatability due to the subjective evaluation of images without using a tool for image processing. In this thesis are described the basic steps of image processing, various methods of image segmentation and chosen segmentation method live-wire. Selected segments were processed in the ImageJ Java environment. In the cystic regions their basic statistical and shape properties were evaluated. The obtained values were used for learning the classification model (decision tree) in the environment RapidMiner. This model was used to create a plug-in for automatic classification of the type of cysts in the program ImageJ.
Forest Detection in Image
Kyjovský, Marek ; Španěl, Michal (referee) ; Šilhavá, Jana (advisor)
This bachelor's thesis deals with studying methods and procedures, which are used to detect forests in aerial and satellite images. This thesis sums up and describes methods of digital image processing. Furthermore, the thesis is focused on an implementation of a demo application which uses these methods. It deals with the design of this application and describes its implementation. Finally the thesis evaluates success of output from this application.
Specle analysis for optical coherence tomography image segmentation
Gallo, Vladimír ; Kolář, Radim (referee) ; Štohanzlová, Petra (advisor)
This paper presents basic principles of optical coherence tomography, review of applications and basic categorization of these systems. Paper also deals with the typical properties of images from optical coherence tomography, especially speckle pattern. This paper also provides an overview of the origin of speckle noise and utilization of its dependence on microstructure of probed tissue for image classification based on textural analysis. Experimental part of this paper consists of phantom preparation, data acquisition by OCT system, implementation of speckle analysis in MATLAB and of testing of its functionality on standard textural dataset and also on acquired image phantom data. Speckle analysis is used for phantom image data segmentation.
Retinal biometry with low resolution images
Smrčková, Markéta ; Odstrčilík, Jan (referee) ; Kolář, Radim (advisor)
This thesis attempts to find an alternative method for biometric identification using retinal images. First part is focused on the introduction to biometrics, human eye anatomy and methods used for retinal biometry. The essence of neural networks and deep learning methods is described as it will be used practically. In the last part of the thesis a chosen identification algorithm and its implementation is described and the results are presented.
Advanced retinal vessel segmentation methods in colour fundus images
Svoboda, Ondřej ; Jan, Jiří (referee) ; Odstrčilík, Jan (advisor)
Segmentation of vasculature tree is an important step of the process of image processing. There are many methods of automatic blood vessel segmentation. These methods are based on matched filters, pattern recognition or image classification. Use of automatic retinal image processing greatly simplifies and accelerates retinal images diagnosis. The aim of the automatic image segmentation algorithms is thresholding. This work primarily deals with retinal image thresholding. We discuss a few works using local and global image thresholding and supervised image classification to segmentation of blood tree from retinal images. Subsequently is to set of results from two different methods used image classification and discuss effectiveness of the vessel segmentation. Use image classification instead of global thresholding changed statistics of first method on healthy part of HRF. Sensitivity and accuracy decreased to 62,32 %, respectively 94,99 %. Specificity increased to 95,75 %. Second method achieved sensitivity 69.24 %, specificity 98.86% and 95.29 % accuracy. Combining the results of both methods achieved sensitivity up to72.48%, specificity to 98.59% and the accuracy to 95.75%. This confirmed the assumption that the classifier will achieve better results. At the same time, was shown that extend the feature vector combining the results from both methods have increased sensitivity, specificity and accuracy.
Supporting Board Game Nemesis on Android Mobile Phone
Štěpánek, Miroslav ; Švec, Tomáš (referee) ; Smrž, Pavel (advisor)
The aim of this thesis is to create a mobile application for the board game Nemesis designed for the Android system, which will allow the user to find out information about the game components during the game. The solution consists of two main parts the first is a model created with the help of the Tensorflow library, which is responsible for the detection of these components. The second is the application itself, which receives results from the model and displays the resulting information to the user. This makes the game easier for the user and helps to speed it up. The resulting system can be modified so that the application can be used for other games.
Urban Element Detection Using Satellite Imagery
Oravec, Dávid ; Herout, Adam (referee) ; Zlámal, Adam (advisor)
Táto práca sa zameriava na správnu detekciu objektov v satelitných snímkach pomocou konvolučných neuronových sietí. Cieľom práce je pomocou natrénovaného modelu detekovať bazény a tenisové ihriská v satelitných snímkach z rôznych miest. Model pracuje s dátami z 10 rôznych miest. Pri vypracovaní bol využitý model neurónovej siete RetinaNet a knižnica Detectron2. Model, ktorý sa podarilo vytrénovať, dokáže detekovať objekty s priemernou presnosťou (AP50) na úrovni 63,402 %. Práca môže byť prínosom v oblasti automatizovania získavania štatistík o povrchu zeme.
Impact of color models on performance of convolutional neural networks
Šimunský, Martin ; Doležel, Petr (referee) ; Škrabánek, Pavel (advisor)
Current knowledge about impact of colour models on performance of convolutional neural network is investigated in the first part of this thesis. The experiment based on obtained knowledge is conducted in the second part. Six colour models HSV, CIE 1931 XYZ, CIE 1976 L*a*b*, YIQ a YCbCr and deep convolutional neural network ResNet-101 are used. RGB colour model achieved the highest classification accuracy, whereas HSV color model has the lowest accuracy in this experiment.

National Repository of Grey Literature : 63 records found   1 - 10nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.