National Repository of Grey Literature 276 records found  1 - 10nextend  jump to record: Search took 0.00 seconds. 
A Tool for Practising Knowledge for Graduation
Mořkovský, Samuel ; Španěl, Michal (referee) ; Beran, Vítězslav (advisor)
The goal of this thesis is to create an educational mobile application for a subject History of arts and culture. The main target group are high schools. Firstly, initial research with students was done about their experience with mobile educational appliactions and opinion about mentioned subject. After the research a mobile appliaction was implemented for Android and iOS systems. Then, a server application processes the logic and communicates through HTTP with mobile applications on users devices. Data are stored in a relational databaze MySQL. The content is managed through a web interface with login. After the implementation, an UX test was performed with students to obtain feedback. The result was a positive reaction and if there was more content, students would actively use the application. The results of this thesis show that students find the application useful and is worthy for further development.
Graph Neural Networks for Document Analysis
Patrik, Nikolas ; Španěl, Michal (referee) ; Hradiš, Michal (advisor)
V tejto práci sa zameriaveme na analýzu dokumentov pomocou grafových neuronových sietí. Na začiatok si predstavíme ako tieto grafove konvolučné siete fungujú a predstavíme si koncept na základe ktorého sa dajú naimplementovať. Ďalej rozoberieme súčasné riešenia ktoré sa zaoberajú semantickým označovaním entít v skenovaných dokumentoch, čo je aj cieľom tejto práce. Následne si predstavíme navrh riešenie ktoré by malo riešiť túto problematiku spolu s ďaľším problémom na ktorý sa chceme zamariať v tejto práci a tým je výber textových entít z dokumentov pomocou aktívneho učenia. Postupne si predstavíme ako bolo toto riešenie implementované a aké nástroje sme pritom použili. Pred koncom si predstavíme dataset ktorý sme annotovali pre vyhodnotenie a tréning našeho riešenia. Na záver si predstavíme výsledky tejto práce, porovnáme vysledky s ostatnými prístupmi ktoré sa zamerievajú na podobný problém a ešte vyhodnotíme ako náš model zvládol extrakciu informácii pomocou aktívneho učenia.
Deep Learning for Image Stitching
Šilling, Petr ; Beran, Vítězslav (referee) ; Španěl, Michal (advisor)
Sešívání obrázků je klíčovou technikou pro rekonstrukci objemů biologických vzorků z překrývajících se snímků z elektronové mikroskopie (EM). Současné metody zpracování snímků z EM k sešívání zpravidla využívají ručně definované příznaky, produkované například technikou SIFT. Nedávný vývoj však ukazuje, že konvoluční neuronové sítě dokáží zlepšit přesnost sešívání tím, že se naučí diskriminativní příznaky přímo z trénovacích obrázků. S ohledem na potenciál konvolučních neuronových sítí tato práce navrhuje sešívací nástroj DEMIS, který staví na pozornostní síti LoFTR pro hledání shodných příznaků mezi páry obrázků. Dále práce navrhuje novou datovou sadu generovanou dělením obrázků z EM s vysokým rozlišením na pole překrývajících se dlaždic. Výsledná datová sada je použita pro dotrénování sítě LoFTR a k vyhodnocení nástroje DEMIS. Experimenty na dané datové sadě ukazují, že nástroj je schopen nalézt přesnější shody mezi příznaky než SIFT. Navazující experimenty na obrázcích s vysokým rozlišením a malými překryvy mezi dlaždicemi dále poukazují na výrazně vyšší robustnost oproti metodě SIFT. Dosažené výsledky celkově naznačují, že hluboké učení může vést k prospěšným změnám v oblasti EM, například k umožnění menších překryvů mezi snímanými obrázky.
Digitization of Handwritten Chess Game Sheets
Šiška, Krištof ; Vaško, Marek (referee) ; Španěl, Michal (advisor)
Chess is one of the most popular board games in the world. An enormous amount of chess games are played daily and its popularity is still on the rise. When playing live chess games, transcripts of the chess matches are created as chess records, also known as chess score sheets. Transcribing these score sheets into digital format is a tedious and time-consuming task. The time spent on transcription increases exponentially if the handwriting is illegible or if the game contains a large number of moves. This work focuses on the problem of transcribing chess score sheets into digital format and reducing the amount of time spent by humans on this necessary but often tedious task in many areas.
Prediction of Shopper Behaviour
Kačo, Adam ; Španěl, Michal (referee) ; Beran, Vítězslav (advisor)
The aim of this work is to create a model for predicting the behavior of those leaving. Such a model has many applications, both for brick-and-mortar stores and online stores. Benefits include, for example, customer satisfaction and comfort. In more detail, I am describing the basic issue of predicting the next products. I am describing recommender systems as a whole, as well as their basic categorization and the basics of the individual models of the recommender systems. I am describing model, that I have created, for the dataset, that I chose to use and a procedure for working with the given model to predict the next purchase. I am also presentimg the procedure of our implementation in detail, as well as the results of testing.
Deep Learning for Image Stitching
Držíková, Diana Maxima ; Vaško, Marek (referee) ; Španěl, Michal (advisor)
Zošívanie obrázkov nie je taký neznámy pojem ako sa na prvý pohľad môže zdať. Určite každý bežný používateľ technológií sa už zozámil s pojmom panoramatický obrázok. V pozadí na zariadení sa prekrývajúce sa obrázky zošívajú a tým vzniká vysoko kvalitný obrázok. Na to aby tento proces fungoval, existujúce algorimy musia spoľahlivo a presne detekovať zaujímavé body, podľa ktorých sa dokáže obrázok správne umiesniť. V tejto práci budú predstavené tradičné metódy na zošívanie obrázkov a taktiež aj metódy s pomocou hlbokých neurónových sietí. Hlavné dva modely, ktoré budú opísane a použíté sú implementácie SuperPoint a SuperGlue. Implementácia bude adaptovaná na párovací systém pre viac ako dva obrázky. Ostatné experimenty, ktoré boli vyskúšané a dopomohli k pochopeniu tejto problematiky budú opísane a vyhodnotené.
Metal Artifacts Reduction in Dental CT Scans
Vágner, Dominik ; Juránková, Markéta (referee) ; Španěl, Michal (advisor)
Artifacts caused by the presence of metals in computed tomography scans impact their readability and can cause problems when making decisions for medical professionals. In recent years, deep learning-based methods have seen considerable success in solving this problem, compared to older hand-crafted solutions. In this work, two supervised neural network models (Autoencoder, U-net) are implemented, along with a better way to solve the problem of creating a synthetic dataset, as otherwise in this case it is naturally impossible to obtain. The results in evaluation metrics (PSNR, SSIM) achieved are on par with those of state-of-the-art solutions while reducing the need for prerequisites that are complicated to prepare. This generalized solution enables a broader and easier application without needing a specific controlled environment.
Image Super-Resolution Using Deep Learning
Bublavý, Martin ; Juránková, Markéta (referee) ; Španěl, Michal (advisor)
The ability to identify and treat a variety of medical diseases is made possible by medical imaging, which is an essential component of contemporary healthcare. Yet, elements like noise and low resolution can have a negative impact on the quality of medical photographs. In this thesis, how to enhance the resolution and quality of medical images was investigated using MedSRGAN, a deep learning model built on generative adversarial networks (GANs). MedSRGAN was implemented and then applied to computed tomography (CT), one of the most utilized medical imaging methods.
CPU Rendering of Large Volumetric Data
Svoboda, Jan ; Vlnas, Michal (referee) ; Španěl, Michal (advisor)
This thesis deals with design and implementation of a system that allows displaying large volumetric data in real time on the CPU of a conventional computer. The thesis aims to solve two biggest problems. Firstly, it aims to solve the problem with rendering itself, where this amount of data often cannot be placed into the main memory of a target computer. Secondly, it aims to solve the problem of storing of this data, where, in the case of large datasets, storing them in the storage of a target computer may not be desirable. The proposed solution contains two applications -- the server one and the client one. The server part is used as a remote storage of volumetric data that is provided to the client application in small blocks and in different qualities. The client application renders this data by the ray casting method and, according to the created strategies, performs loading and storing of required blocks in the local memory. In order to achieve high performance, the client application was implemented with an emphasis on parallelization of the main processes. The resulting system allows a user to display large datasets stored on a server's storage and to manage the datasets using a simple graphical user interface.
Searching for Similar 3D Models
Rachler, Ivan ; Čižmarik, Roman (referee) ; Španěl, Michal (advisor)
This paper deals with searching 3D models based on their similarity. The input model is compared to all models available in a database and then has its similarity to each of them evaluated. Specifically in this paper, the similarity is evaluated based on the model's shape descriptor, which is extracted by a trained neural network called PointNet. It also takes a closer look at the performance of this network and at how well it compares with other existing networks.

National Repository of Grey Literature : 276 records found   1 - 10nextend  jump to record:
See also: similar author names
1 Španěl, Martin
Interested in being notified about new results for this query?
Subscribe to the RSS feed.