National Repository of Grey Literature 85 records found  beginprevious21 - 30nextend  jump to record: Search took 0.00 seconds. 
Regulation of transcription in mycobacteria.
Páleníková, Petra ; Krásný, Libor (advisor) ; Mrvová, Silvia (referee)
The bacterial cell has to be able to cope with environmental changes. Adaptation to these changes is achieved by changes in gene expression. Gene expression is regulated mostly at the level or transcription initiation. Transcription initiation depends on the sequence of promoters and is regulated by alternative sigma factors and many transcription factors acting either as activators or repressors. This work describes various ways of transcription regulation in the bacterial genus Mycobacterium that includes deathly pathogens such as M. tuberculosis and M. leprae. The typical characteristics of this genus are poorly conserved promoters, a high number of sigma and transcription factors, the presence of two-component systems and a lot of small RNAs that have not been characterized in detail so far.
Effect of knock out of yxkO gene on environmental stress adaptation in genus Bacillus
Tkadlec, Jan ; Lichá, Irena (advisor) ; Krásný, Libor (referee)
We have previously characterized a Bacillus subtilis mutant defective in growth and osmoadaptation under limited K+ concentrations. In this mutant, the yxkO gene encoding a putative ribokinase is disrupted. This gene is supposed to belong to the sigma B operon and its expression is induced after osmotic, heat and ethanol shock. In comparison to the wild type, this mutation causes pleiotropic changes in host phenotype. In addition to its osmosensitivity, the mutant differs in cell shape, motility and ability to produce endospores. Our goal was to focus on manifestations of the mutation in the yxkO gene in other bacteria of the genus Bacillus. Using plasmid pMUTIN4 we have prepared mutants with disruptions of this gene derived from Bacillus amyloliquefaciens and Bacillus subtilis subsp. spizizenii strains differing in the yxkO surroundings and in the level of laboratory domestication. As in the previous study (with laboratory strain Bacillus subtilis 168) we demonstrate impaired ability of the mutant strain derived from Bacillus amyloliquefaciens to grow in potassium limitation and osmotic shock. We have studied this phenomenon at the level of the growth dynamics of the bacterial culture. We have also detected an increased sensitivity of the strain derived from Bacillus amyloliquefaciens to...
Factors interacting with bacterial RNA polymerase
Sudzinová, Petra ; Krásný, Libor (advisor) ; Fišer, Radovan (referee)
The bacterial cell must be able to rapidly change its gene expression to survive unstable external conditions. Transcription is the key level that affects gene expression. The pivotal enzyme of transcription is RNA polymerase (RNAP). Activity of RNAP is tightly regulated by transcription factors (TFs). These factors affect RNAP in different ways. This work presents an overview of various proteins and others factors, description of their effects on transcription and also mechanisms of their actions. TFs could be divided according to various criteria. In this work, TFs are divided according to how they interact with RNAP: TFs interacting only with RNAP; TFs binding simultaneously DNA and RNAP; TFs interacting with RNA and RNAP. This work presents a comprehensive overview of various TFs that are involved in the bacterial cell's reprogramming of gene expression that is required to withstand the changes in the environment.
Factors affecting gene expression in Bacillus subtilis
Sudzinová, Petra ; Krásný, Libor (advisor) ; Vopálenský, Václav (referee) ; Vohradský, Jiří (referee)
Bacterial DNA-dependent RNA polymerase (RNAP) is a key enzyme of bacterial transcription. Its activity must be tightly regulated. This could be done on the level of promoter DNA topology recognition, by changing the intracellular levels of metabolites, or by binding proteins, known as transcription factors. Even though the RNAP regulatory network has been intensively studied for decades, new regulators are still being described. The main focus of this Thesis is to characterize some of them: i) HelD, a novel RNAP interacting factor, with so far unknown protein 3D structure; ii) RNase J1, an enzyme with a unique mechanism of functioning; iii) Spx, a major regulator of gene expression in Bacillus subtilis, with still new roles to be defined and iv) the effect of the topological state of promoters on transcription. We identified HelD as an interacting protein of RNAP in Bacillus subtilis and described its biochemical properties. It stimulates transcription in an ATP-dependent manner, by enhancing recycling of RNAP molecules (Publication I). We published the first insight into the HelD structure by SAXS (small angle X-ray scattering) and deepened the understanding of HelD domain composition (Publication III). And finally, we were able to solve the cryo-EM structure of HelD:RNAP complexes from...
Molecular mechanism of quality control during snRNP biogenesis
Klimešová, Klára ; Staněk, David (advisor) ; Krásný, Libor (referee) ; Vomastek, Tomáš (referee)
The spliceosome is one of the largest and most dynamic molecular machines in the cell. The central part of the complex is formed by five small nuclear ribonucleoproteins (snRNPs) which are generated in a multi-step biogenesis pathway. Moreover, the snRNPs undergo extensive rearrangements during the splicing and require reassembly after every intron removal. Both de novo assembly and post-splicing recycling of snRNPs are guided and facilitated by specific chaperones. Here, I reveal molecular details of function of two snRNP chaperones, SART3 and TSSC4. While TSSC4 is a previously uncharacterized protein, SART3 has been described before as a U6 snRNP-specific factor which assists in association of U6 and U4 particles into di-snRNP, and is important for the U4/U6 snRNP recycling. However, the mechanism of its function has been unclear. Here, I provide an evidence that SART3 interacts with a post-splicing complex and propose that SART3 could promote its disassembly. Our data further suggest that SART3 binds U6 snRNP already within the post-splicing complex and thus participates in the whole recycling phase of U6 snRNP. Then, I show that TSSC4 is a novel U5 snRNP-specific chaperone which promotes an assembly of U5 and U4/U6 snRNPs into a splicing-competent tri-snRNP particle. We identified...
Production of toxins by Bacillus subtilis and their roles in interspecies competitions.
Šureková, Kristína ; Krásný, Libor (advisor) ; Mikušová, Gabriela (referee)
Bacillus subtilis is a gram positive soil bacterium that is surrounded by many other microorganisms its environment. That is why it is necessary for the bacterium to be able to fight with these microorganisms for the nutrients and living space. B. subtilis contains the modules in its genetic make-up that improve its ability to compete. These modules are called the toxin-antitoxin systems. This Diploma Thesis is trying to identify yet undescribed extracellular toxins produced by the wild type BSB1 strain of B. subtilis. The related microorganism Bacillus megaterium was used as a competing bacterium. The contact-dependent or independent manner of killing the competing bacterium was demonstrated using this model. By deletion analysis and comparisons of the genomes of the various strains of B. subtilis, the SPβ prophage was first identified as a region containing an unknown toxin(s). Analysis of the extracellular proteome of B. subtilis subsequently revealed an unknown toxin (or toxin complex, respectively) of the molecular weight exceeding 100 kDa. Even more fascinating was the finding that such a large protein molecule is resistant to the pancreatic protease, trypsin. Subsequent non-enzymatic cyanogen bromide cleavage of the extracellular proteins and their analysis by mass spectrometry revealed...
Mode of action and nature of different susceptibility of bacteria to antibacterial compounds lipophosphonoxins
Havlová, Noemi ; Mikušová, Gabriela (advisor) ; Krásný, Libor (referee)
Lipophosphonoxins (LPPO) are small synthetic antibacterial compounds targeting the cytoplasmic membrane. 1st generation of LPPO (LPPO I) displays an antimicrobial activity against Gram positive bacteria, however they do not show any activity against Gram negatives. After the modification of the iminosugar module (bearing the positive charge) the 2nd generation of LPPO (LPPO II) were synthetized. LPPO II exhibit broadened activity against Gram positive bacteria and also kill Gram negatives, including multiresistant strains. This work focuses on the mode of action of LPPO - the pore-forming activity of these substances is investigated on model membranes as well as in vivo. It also deals with the nature of different activity against Gram positive and Gram negative bacteria using model bacteria Bacillus subtilis and Escherichia coli. The results show that the insensitivity of Gram negative bacteria against LPPO I is probably caused by the different cell wall structure and the presence of the outer membrane that LPPO are almost unable to overcome. Also, the composition of phospholipids in the target membrane influences the antimicrobial activity of LPPO. Higher proportion of phospholipids with neutral charge reduces the LPPO pore-forming activity but is also responsible for low cytotoxicity in...
SigN from Bacillus subtilis: Functional characterization.
Kambová, Milada ; Krásný, Libor (advisor) ; Nešvera, Jan (referee)
Bacillus subtilis strain 3610 is an ancestral undomesticated strain. It diers from the laboratory strain 168 in many aspects. One dierence in strain 3610 is the presence of plasmid pBS32 encoding the sigma factor N (σN). This σ factor is activated when DNA damage occurs and induces the bacteria's cell death. The aim of the Thesis was a systematic characterisation of σN-dependent transcription. First, I showed that plasmid-borne but not chromosome-borne predicted σN-dependent promoters were ac- tive in transcription in vitro. Next, the anities of RNAP with σN for DNA, initiating NTP (iNTP) were determined for both relaxed and supercoiled DNA templates. Sur- prisingly, the activity of RNAP on relaxed σN-dependent promoters was higher than on their supercoiled versions, an opposite trend than displayed by RNAP associated with other σ factors. This property of σN-dependent promoters was not encoded by the core promoter sequence. In summary, this Thesis contributed to our understanding of the bacterial transcription apparatus. 1
Regulation of transcription in Gram-positive bacteria
Rabatinová, Alžběta ; Krásný, Libor (advisor) ; Bobek, Jan (referee) ; Valášek, Leoš (referee)
Bacteria are the most abundant organisms on the planet. They live almost in all environments, including those that are most extreme. All land and water ecosystems depend heavily upon their activity. Bacteria play essential roles in cycling of nutrients such as carbon, nitrogen, and sulphur. Due to their short cell cycle, they must be able to swiftly adapt to the conditions of their habitat to survive. Microbial growth itself is an autocatalytic process. There are three distinct phases of the growth curve: lag, exponential (log), and stationary. Bacterial cells must change their gene expression between these phases in order to adapt to the new conditions. The first stage of gene expression is transcription. The key enzyme of this stage is RNA polymerase (RNAP) that transcribes DNA into RNA. RNAP is regulated by a number of accessory proteins and also small molecule effectors. Understanding how RNAP functions is essential for understanding how bacteria cope with changing environments. This Thesis presents studies of selected aspects of bacterial gene expression regulation at the level of transcription, using Bacillus subtilis as the model organism. The first part of this Thesis focuses on protein determinants of the ability of RNAP to be regulated by the concentration of the initiating nucleoside...
Factors affecting gene expression in Bacillus subtilis
Sudzinová, Petra ; Krásný, Libor (advisor) ; Vopálenský, Václav (referee) ; Vohradský, Jiří (referee)
Bacterial DNA-dependent RNA polymerase (RNAP) is a key enzyme of bacterial transcription. Its activity must be tightly regulated. This could be done on the level of promoter DNA topology recognition, by changing the intracellular levels of metabolites, or by binding proteins, known as transcription factors. Even though the RNAP regulatory network has been intensively studied for decades, new regulators are still being described. The main focus of this Thesis is to characterize some of them: i) HelD, a novel RNAP interacting factor, with so far unknown protein 3D structure; ii) RNase J1, an enzyme with a unique mechanism of functioning; iii) Spx, a major regulator of gene expression in Bacillus subtilis, with still new roles to be defined and iv) the effect of the topological state of promoters on transcription. We identified HelD as an interacting protein of RNAP in Bacillus subtilis and described its biochemical properties. It stimulates transcription in an ATP-dependent manner, by enhancing recycling of RNAP molecules (Publication I). We published the first insight into the HelD structure by SAXS (small angle X-ray scattering) and deepened the understanding of HelD domain composition (Publication III). And finally, we were able to solve the cryo-EM structure of HelD:RNAP complexes from...

National Repository of Grey Literature : 85 records found   beginprevious21 - 30nextend  jump to record:
See also: similar author names
2 KRÁSNÝ, Lukáš
Interested in being notified about new results for this query?
Subscribe to the RSS feed.