National Repository of Grey Literature 61 records found  previous11 - 20nextend  jump to record: Search took 0.01 seconds. 
Nanostructures for solar cells: controlling the surface electronic properties by monolayers of carborane molecules
Hladík, Martin ; Fejfar, Antonín (advisor)
Doped layers of crystalline silicon are currently the main driver of con- ventional photovoltaic devices. Direct introduction of group III and V atoms into the silicon matrix is still the mainstream of mass production of doped silicon. In this thesis, we are interested in non-invasive ways of doping of silicon wafers through the adsorption of molecules with a large intrinsic dipole moment on the semiconductor surface. These molecules, namely carboranedithiols, create a self-assembled monolayer accompanied by the surface dipole formation. In order to stabilise the dipole layer, an interfacial charge transfer can occur between the adsorbate and the substrate, modifying the density of accumulated charge carriers just below the silicon surface. These are the fundamen- tal features of the surface transfer doping of the silicon substrate where we employ the carboranedithiol molecules as mediators of adsorbing dipole layer. Regarding the structure of the thesis, we first test the carboranedithiol molecules on gold, and then we move on to the issue of silicon-molecule junctions. We characterise the geometry and the electronic properties of the carboranedithiol molecules on both of these substrates by means of atomistic simulations based on a density functional theory.
Nanostructures for solar cells: controlling the surface electronic properties by monolayers of carborane molecules
Hladík, Martin ; Fejfar, Antonín (advisor) ; Bartošík, Miroslav (referee) ; Londesborough, Michael G. S. (referee)
Doped layers of crystalline silicon are currently the main driver of con- ventional photovoltaic devices. Direct introduction of group III and V atoms into the silicon matrix is still the mainstream of mass production of doped silicon. In this thesis, we are interested in non-invasive ways of doping of silicon wafers through the adsorption of molecules with a large intrinsic dipole moment on the semiconductor surface. These molecules, namely carboranedithiols, create a self-assembled monolayer accompanied by the surface dipole formation. In order to stabilise the dipole layer, an interfacial charge transfer can occur between the adsorbate and the substrate, modifying the density of accumulated charge carriers just below the silicon surface. These are the fundamen- tal features of the surface transfer doping of the silicon substrate where we employ the carboranedithiol molecules as mediators of adsorbing dipole layer. Regarding the structure of the thesis, we first test the carboranedithiol molecules on gold, and then we move on to the issue of silicon-molecule junctions. We characterise the geometry and the electronic properties of the carboranedithiol molecules on both of these substrates by means of atomistic simulations based on a density functional theory.
Thin films for photovoltaics deposited by plasma chemistry methods\n
Fejfar, Antonín
Thin films are key components for practically all of contemporary photovoltaic cells for solar energy utilization. Cells use thin films for optimizing light trapping, for selecting and collection of photogenerated charges and interface passivation or as absorber layers. Each year several hundreds of square kilometers of thin films are deposited mainly by plasma chemistry methods.
Mechanical and Electrical Properties of Microcrystalline Silicon Thin Films
Vetushka, Aliaksei ; Fejfar, Antonín (advisor) ; Čech, Vladimír (referee) ; Sládek, Petr (referee)
Amorphous and nano- or micro- crystalline silicon thin films are intensively studied materials for photovoltaic applications. The films are used as intrinsic layer (absorber) in p-i-n solar cells. As opposed to crystalline silicon solar cells, the thin films contain about hundred times less silicon and can be deposited at much lower temperatures (typically around 200 0 C) which saves energy needed for production and makes it possible to use various low cost (even flexible) substrates. However, these films have a complex microstructure, which makes it difficult to measure and describe the electronic transport of the photogenerated carriers. Yet, the understanding of the structure and electronic properties of the material at nanoscale is essential on the way to improve the efficiency solar cells. One of the main aims of this work is the study of the structure and mechanical properties of the mixed phase silicon thin films of various thicknesses and structures. The key parameter of microcrystalline silicon is the crystallinity, i.e., the microcrys- talline volume fraction. It determines internal structure of the films which, in turn, decides about many other properties, including charge transport and mechanical sta- bility. Raman microspectroscopy is a fast and non-destructive method for probing the...
Development and applications of near-field imaging methods in the terahertz spectral domain
Berta, Milan ; Kadlec, Filip (advisor) ; Fejfar, Antonín (referee) ; Adam, Auréle J.L. (referee)
We are reporting on a study of the near-field sensitivity and resolution of a metal-dielectric probe (MDP). The propagation of the electromagnetic field across the probe was studied experimentally by means of time-domain terahertz spectroscopy and numerically simulated by CST MicroWave Studio 2008. Several localised areas at the probe end facet were distinguished and showed to be sensitive to the local dielectric properties and local anisotropy of the sample. Contrast and sensitivity measurements were conducted in several configurations of a MDP; the results were confirmed by simulations. The acquired data were analysed by using singular value decomposition that enabled separating independent physical phenomena in the measured datasets and filtering external disturbances out of the signal. Independent components corresponding to the changes in the output terahertz pulse upon varying the probe-sample distance and reflecting the local anisotropy in a ferroelectric barium titanate (BaTiO3) crystal were extracted and identified. The domain structure with characteristic dimensions of about 5 um was resolved during imaging experiments on the ferroelectric BaTiO3 sample, i.e. the resolved structures were ten times smaller than the characteristic dimensions of the end facet of the probe and forty times smaller than...

National Repository of Grey Literature : 61 records found   previous11 - 20nextend  jump to record:
See also: similar author names
2 Fejfar, Aleš
Interested in being notified about new results for this query?
Subscribe to the RSS feed.