National Repository of Grey Literature 7 records found  Search took 0.02 seconds. 
3D Printed Microfluidic Cell for Spectroelectrochemical Analysis
Šikula, M. ; Vaněčková, Eva ; Hromadová, Magdaléna ; Kolivoška, Viliam
Recent advances in fused deposition modeling 3D printing (FDM 3DP) enabled \nthe manufacture of customized spectroelectrochemical (SEC) devices. Despite significant progress, \nreported designs still rely on conventional optical components (windows and cuvettes). In this \nwork, we apply bi-material FDM 3DP combining electrically conductive and optically \ntranslucent filaments to manufacture a fully integrated microfluidic SEC device. Employing cyclic \nvoltammetric measurements with redox probes, we demonstrate that the platform allows SEC sensing of \nreactants, intermediates, and products of charge transfer reactions in an oxygen- free \nenvironment. Developed approaches pave the way for SEC d vices with dramatically\nreduced costs compared to currently available commercial platforms.\n
An Enzymatic Biosensor with Amperometric Detection in a Flow Injection Analysis for the Determination of L-lactic Acid: Development and Application
Tvorynska, Sofiia ; Barek, J. ; Josypčuk, Bohdan
An amperometric biosensor consisting of an enzymatic mini-reactor (lactate oxidase covalently\nattached to −NH2 functionalized mesoporous silica powder SBA−15 using glutaraldehyde) and\na silver amalgam-based screen-printed electrode acting as a transducer was developed for the\ndetermination of L-lactic acid (LA) in FIA. The detection potential of −0.9 V vs. Ag pseudoreference\nelectrode was applied for cathodic detection of enzymatically consumed oxygen.\nUnder the optimized conditions, the constructed biosensor enabled selective determination of\nLA with a micromolar limit of detection. Importantly, the proposed biosensor represented\nexcellent operational stability after ≥350 measurements. Finally, it was successfully applied to\nreal sample analysis.
Analytical Derivatization for Identification of Electrochemical Oxidation Products of Fentanyls
Barták, P. ; Skopalová, J. ; Jerga, R. ; Štolbová, D. ; Navrátil, Tomáš ; Langmaier, Jan
Analytical derivatization and GC-MS analysis were employed for the identification of main\nproducts from the electrochemical oxidation of fentanyl derivatives. Chemical derivatization\nprovides proof of the chemical reactivity of functional groups in oxidation products and serves\nfor the chemical conversion of target compounds into the second series of derivatives to confirm\nthe identification of particular products. Using the direct GC-MS analysis of oxidation products,\nderivatization of aldehydes with cysteamine and derivatization of amides by acidic hydrolysis\nand subsequent reaction with ethylchloroformiate, phenylacetaldehyde, and Nphenylpropanamide\nwere unambigously identified as oxidation products from fentanyl,\nthiophen-2-ylacetaldehyde, and N-phenylpropanamide from sufentanil, and\nphenylacetaldehyde and 2-furanilid from furanylfentanyl.
A comparative study of covalent glucose oxidase and laccase immobilization techniques at powdered supports for biosensors fabrication
Tvorynska, Sofiia ; Barek, J. ; Josypčuk, Bohdan ; Nesměrák, K.
In order to develop the optimal strategy and to deepen the knowledge in the field of enzyme immobilization, three different techniques of covalent binding for two enzymes (glucose oxidase and laccase) at powdered surfaces were compared. Immobilization protocol was optimized by changing supports (two mesoporous silica powders (SBA−15, MCM−41) and a cellulose powder), the functionalized\ngroups introduced at support surfaces (−NH and −COOH), and the methods of activation (glutaraldehyde and carbodiimide). Amino and carboxyl functionalized mesoporous silica and cellulose powders\nwere prepared by silanization using (3-aminopropyl)triethoxysilane and carboxyethylsilanetriol, respectively. It was found that coupling of both enzymes by their –NH groups through glutaraldehyde to -NH functionalized supports, in particular SBA15−NH and cellulose−NH for glucose oxidase, MCM41−NH for laccase, showed the highest activity and the best stability.
Ion Transfer Voltammetry across the Polarized Ionic Liquid/Water Interface: Base for Electrochemical Sensors
Langmaier, Jan ; Samec, Zdeněk
Some electrochemical techniques such as voltammetry at the polarized interfaces between two\nimmiscible electrolyte solutions (ITIES) represent interesting alternatives to classical\nelectrochemistry. The benefit of the ion transfer voltammetry lies in the possibility of detection\nof ionic species which are not otherwise redox active. The methodology enables apart of direct\ndetermination of ionic samples (including pharmaceutical and clinical ones) also to monitor\nreaction processes (acido-basic, enzymatic, etc.), determination of reaction substrates and\nproducts in one experimental step, evaluation of reaction and transport kinetics, and estimation\nof lipophilicity of involved species.
Preparation, Testing and Application of Amalgam Screen-Printed Electrodes
Josypčuk, Bohdan ; Langmaier, Jan ; Tvorynska, Sofiia
Silver amalgam screen-printed electrodes (AgA-SPEs) were designed, prepared, and tested for\nthe first time as perspective representatives among SPEs for measuring at high negative\npotentials. The precise coulometric preparation procedure for mercury deposition at the\nworking electrode surface of the commercial silver-SPE was developed. An optimal\nelectrolyzer construction for the mercury deposition, electrolyte composition, and electrolysis\nconditions were proposed. The maximum value of hydrogen overvoltage (-1979 ± 4 mV) was\nfound on AgA-SPE with 50% (w/w) of Hg content in 0.1 mol L-1 NaOH, which is more negative\nthan with the original silver-SPE for 387 mV (-1592 ± 12 mV).
Comparison of the Covalent Laccase Immobilization at Amino- and Carboxylfunctionalized Mesoporous Silica, Glassy Carbon, and Graphite Powders using Different Coupling Agents for Optimal Biosensor Preparation
Tvorynska, Sofiia ; Barek, J. ; Josypčuk, Bohdan
In order to find the most suitable immobilization protocol, a comparison of three strategies\nbased on the application of –NH2 and –COOH functionalized supports with the different\nactivation agents (glutaraldehyde and carbodiimide) have been conducted for the covalent\nenzyme (laccase) attachment. Two kinds of the supports, namely mesoporous silica (SBA−15,\nMCM−41) and carbonaceous (glassy carbon, graphite) powders, have been used. It was found\nthat a biosensor consisted of tubular detector of silver solid amalgam as a working electrode\nand the enzymatic mini-reactor with laccase covalently attached to glutaraldehyde activated\n–NH2 functionalized MCM−41 shows the best results regarding sensitivity and stability for\ndopamine detection.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.