National Repository of Grey Literature 98 records found  beginprevious89 - 98  jump to record: Search took 0.00 seconds. 
Emergent properties of the G1/S network
Dražková, Jana ; Tomášek, Petr (referee) ; Palumbo,, Pasquale (advisor)
Tato práce se zabývá buněčným cyklem kvasinky Saccgaromyces cerevisiae. Oblastí našeho zájmu je přechod mezi G1 a S fází, kde je naším cílem identifikovat velikosti buňky v době počátku DNA replikace. Nejprve se věnujeme nedávno publikovanému matematickému modelu, který popisuje mechanismy vedoucí k S fázi. Práce poskytuje detailní popis tohoto modelu, stejně jako časový průběh některých důležitých proteinů či jejich sloučenin. Dále se zabýváme pravděpodobnostním modelem aktivace replikačních počátků DNA. Nově uvažujeme vliv šíření DNA replikace mezi sousedícími počátky a analyzujeme jeho důsledky. Poskytujeme také senzitivní analýzu kritické velikosti buňky vzhledem ke konstantám popisujícím dynamiku reakcí v modelu G1/S přechodu.
Optimization of ethanol bioproduction from waste materials using SSF method
Filová, Dagmar ; Vránová, Dana (referee) ; Babák, Libor (advisor)
Presented diploma thesis is dealing with the problematics of fuel ethanol production. Relevant basic terminology is explained in the theoretical part, methods of lignocellulose pre-treatments and their conversion to bioethanol are introduced. Attetion is also given to microorganisms used for bioethanol production on industrial scale, as well as analytical instrumental techniques for glucose and ethanol detection. In experimental part, we are focusing on substrate composition analysis – contents of dry matter, cellulose and ash was investigated. Waste paper was chosen as substrate, as it does not find any other use beside recycling these days. Chosen production microorganism, that conversts sugars into etanol was the unknown strain of Saccharomyces cerevisiae. Primal substrate pre-treatment – removal of rigid parts was performed in several physical and physical – chemical ways. Substrate with such pre-treatment was ready for enzymatic hydrolysis, during which monomers from polymer matrix were formed. Ethanol was produced using method of simultaneous saccharification and fermentation, when enzymatic hydrolysis and fermentation take place at the same time and the same container.
A bioconversion study of cellulosic waste to ethanol using yeasts systems
Čalová, Iveta ; Vítová, Eva (referee) ; Babák, Libor (advisor)
This diploma thesis deals with the optimization of the production of ethanol from waste paper using yeast. There were used 4 kinds of paper as a substrate - office paper, non-recycled workbook, recycled workbook and newspaper. All papers were pretreated with the following procedures: grinding, microwaves + NaOH, microwave + H2SO4 and microwave + H2SO4 + NaOH. The glucose concentration was determined in enzymatic hydrolysis by HPLC. Saccharomyces cerevisiae were chosen for ethanol production. The production of ethanol was carried out with all the pretreated papers in simultaneous saccharification and fermentation. During hydrolysis, the pretreated papers have reached the highest results in the combination with microwave + H2SO4 + NaOH. Non-recycled workbook was the only exception, where the highest concentration of glucose has been obtained by the pretreatment of microwaves + H2SO4. Following results have been acquired: office paper 24,69 gdm-3, non-recycled workbook 22,47 gdm-3, recycled workbook 16,94 gdm-3 and newspapers 15,36 gdm-3. SSF was carried out again with all the papers and their pretreatments. The highest concentration of ethanol has been achieved in microwave pretreatment + H2SO4 + NaOH. The highest overall concentration has been gained from the office paper, amounted to 16,98 gdm-3. The maximum concentration of ethanol for non-recycled workbook has been 15,25 gdm-3, for recycled workbook 12,2 gdm-3 and for newspapers 12,59 gdm-3.
A study of the possibility of waste pastries using for the bioproduction of selected metabolites
Hudečková, Helena ; Vránová, Dana (referee) ; Babák, Libor (advisor)
The aim of this diploma thesis was to study the possibility of using waste bread to bioproduction of selected metabolites. As bakery waste was used waste bread that came from coffee-house “Zastávka”. Bread was pre-treated by grinding into small particles and then it was made to form 15% w/v suspension, which was subjected to enzymatic hydrolysis. For the hydrolysis has been used the -amylase for liquefaction of the substrate and that was followed by a glucoamylase which sacharificated the substrate. There have been several methods of hydrolysis from which was chosen the optimal method for pre-treatment of the substrate prior to fermentation. The effectivity and a process of hydrolysis were determined spectrophotometrically by Somogyi-Nelson method. Final yields of glucose from hydrolysis were determined by HPLC method. Enzymatic hydrolysis was followed by fermentation, which was carried out in two ways, namely by adjusting the pH of the hydrolyzate to pH 5, and without pH adjustment. During the fermentation was carried out sampling in which was determined the content of glucose, glycerol and ethanol by HPLC method. The yeasts Saccharomyces cerevisiae were used for the fermentation which was performed at 30 °C. High yield of glucose was achieved by hydrolysis in two steps (70,28 gl-1), but for the fermentation was used mixed hydrolysis (second method of mixed hydrolysis) with yield 67,94 gl-1. High ethanol yield was achieved during fermentation without treatment pH, namely 31,5 gl-1.
Enzymatic hydrolysis of waste cardboard using the SSF method - a source of raw materials for the production of liquid biofuels.
Hlaváček, Viliam ; Stloukal, Radek (referee) ; Gabriel, Petr (advisor)
This master’s thesis discusses the useof enzymatic hydrolysis process of waste cardboard using simultaneous saccharification and fermentation (SSF) as a source of raw materials for production of liquid biofuels. This thesis is based on theses written by Ing. Brummer and Ing.Lepař.Thus, results gained in these works have been used and also further developed. The theoretical part summarizes the reasons for further development of SSF method and discusses, as well, the achievements reached in the processing of lignocellulosic waste materials by the SSF method so far.This section also discusses the general characteristics of lignocellulosic materials and also of the cellulolytic enzymes. It focusses also on individual pretreatment methods of lignocellulosic material and options of increasing the yield of the whole process. The experimental part verifies the particular results reached in previous theses and at the same time a further optimization of the method has been carried out because of the transfer of the whole process into a fermenter. Cardboard was set as the substrate for the experiments as it was evaluated by Ing. Brummer as the best one for enzymatic hydrolysis which was carried out by enzymes from Novozymes®. Parameters such as temperature, pH and kind of used buffer, the loading concentration of substrate and enzymes, were set according to the thesis of Ing. Lepař, which was aimed to their optimization. The SSF process done in fermenter of 2.0 l volume confirmed the previous results and furthermore it has been more effective through optimization of the added inoculum volume. It has been confirmed that the best substrate is cardboard finely grinded by vibrating mill. Also experiments with added nutrients had been done as an effort to increase the ethanol concentration, but these haven’t resulted insatisfying results. The maximal concentration of ethanol was 23,49 g/l, which was achieved after further optimization of various conditions. This result equals to experimental yield of 84,79 %.
The enzymatic hydrolysis of waste paper - a source of raw materials for production of liquid biofuels
Lepař, Petr ; Stloukal, Radek (referee) ; Gabriel, Petr (advisor)
In diploma thesis the process of enzymatic hydrolysis of waste paper as a source for the production of liquid biofuels is discused. It follows directly the homonymous diploma thesis from Ing. Brummer, and it is based on the findings, which were solved and decided in previous work. In the theoretical part there is a summarization of basic information on the enzymatic hydrolysis of waste paper and the associated influences of various factors of the rate and degree of hydrolysis. Higher attention is paid to a waste cardboard and its pretreatment methods due to the maximalization of the yield of hydrolysis. The next part summarizes options of the fermentative production of biofuels, focusing on the method of simultaneous saccharification and fermentation, where the further appropriate organism for ethanol fermentation is discussed. The last part is about the technological process from the raw material input to the separation of ethanol. In the experimental section the pre-treatment of waste paper in order to maximize the efficiency of hydrolysis was examined. The best results were achieved using a vibratory mill. In addition, various parameters for simultaneous saccharification and fermentation were optimized using enzymes from Novozymes® company and the yeast Saccharomyces cerevisiae. The conversion rate of waste paper cellulose to reducing sugars was observed by spectrophotometric method by Somogyi - Nelson and the amount of produced ethanol was quantified using HPLC / RI. As a part of this thesis some conditions (amount of enzyme, substrate, nutrients, yeasts, temperature, pH, type of buffer) were optimized to maximize the effectiveness of the overall process. All experiments were carried out on corrugated cardboard, which was chosen as the most promising material for hydrolysis that was among the waste paper pulp in diploma thesis by Ing. Brummer.
Investigation of yeast properties during the beer fermentation
Kociánová, Lenka ; Vítová, Eva (referee) ; Omelková, Jiřina (advisor)
In this diploma thesis, the properities of brewery’s yeasts during the operation beer fermentation in the selected brewery and dependences of diferent agents and their influence on viability and vitality of the yeasts were studied. Other observed properities were physiological state, pH, temperature, a value of soft and coarse sludges, a value of dissolved oxygen in wort, the level of wort’s fermentation. It were collected the samples of fermenting wort and washing yeasts for determination. The used yeasts were observed from the first time until thein last used (generally 4 times). pH, temperature, apparent fermenting and total numer of yeast cells were measured in the collected samples. The used yeasts were washed before every other application and vitality was determined. The number of death cells were observed by this method. The number of death cells never fell bellow 5 %. The value of dissolved oxygen in wort is also the important agent for the growth of yeasts. The touchs with low number of oxygen showed that the time for fermentation had to be longer (by about 3 or 4 days more). The touchs with higher number of sludges showed that the sludges haven’t any influence on the yeasts and the procces of fermentation. Confirm the accuracy of the repeated used of the yeasts was the object of this thesis.
Factors influencing the quality of red wine
Zechmeisterová, Lucie ; Vránová, Dana (referee) ; Omelková, Jiřina (advisor)
In my thesis, I focused on monitoring of microorganisms in the sample of red grape juice and on the interactions between yeasts, bacteria and filamentous fungi. Three different media were applied for the cultivation of microorganisms; firstly for monitoring of total volume of microorganisms, secondly for yeasts and third time for lactic acid bacteria. The indirect method was used for the determination of the amount of viable cells. This method consists in enumerating of visible macroscopic colonies grown up on agar plates. When the cells grew up, the forms of colonies were analyzed visually and the morphology of microorganisms was detected microscopically. The operating time of enzymes in grape juice in the production of red wine was monitored after application of commercial enzymatic preparation. The enzym action in grape juice was observed on the basis of the process of degradation of high – molecular substrate by enzymes through the use of Ubbelohd´s viscometer. The research findings provided a lot of knowledge about the occurance of microflora in the process of production of red wine. The commercial preparations added to grape juice played a significant role.
Fyziologické změny kmenů Saccharomyces cerevisiae s delecemi v genech pro PDR transportéry
Hlaváček, Otakar ; Váchová, Libuše ; Palková, Z.
We focused on comparison of the development and behaviour of S. cerevisiae strains overproducing various PDR transporters to those that have genes for some of them deleted. Besides a spectrum of physiological parameters, we analysed also expression changes of selected genes and measured reduced cytochrome spectra of these strains to find out the state of their respiration
Vyhledávání jaderného transportinu faktoru ISW1 remodelujícího chromatin u Saccharomyces cerevisiae
Strádalová, Vendula ; Hašek, Jiří ; Janatová, Ivana
Several intragenously-tagged versions of the ISW1 gene were constructed to follow Isw1p localization either in living (GFP-fusions) or in fixed cells (c-Myc-fusions). The whole set of available importin mutants was transformed with vectors carrying an intragenously-tagged ISW1 gene. In the strains where the importins Kap120p, Nmd5p, Sxm1p, Kap114p, Los1p, Msn5p, Kap123p and Pdr6 were deleted, the Isw1p-GFP fusion regulated by the ISW1 promoter was localized always in the nucleus. This suggests that none from these importins is required for nuclear localization of Isw1p. The localization of the Isw1p-GFP in the mtr10-1 strain differed from that observed in all the other analyzed importin mutants. Our results indicate that Mtr10p could be a good candidate for Isw1p importin.

National Repository of Grey Literature : 98 records found   beginprevious89 - 98  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.