National Repository of Grey Literature 22,258 records found  beginprevious31 - 40nextend  jump to record: Search took 1.48 seconds. 

Efficiency of measures that support establishment of new producer groups in the Czech Rebublic, Slovakia and Poland
Kotyza, Pavel ; Tomšík, Karel (advisor) ; Rosochatecká, Eva (referee)
Presented dissertation theses is focused on evaluation of efficiency of public support to agricultural producer group establishment. Historical development of agricultural sector influenced the difference of Czechoslovakian and Polish agriculture. Despite the differences, governments of the Czech Republic, Slovakia and Poland decided to provide public support for newly established producer groups after EU accession. Main aim of this analyses is to compare how money were provided to newly established producer groups in above mentioned countries and to assess efficiency of spend money. Main part of the theses is focused on measures provided during part of the first postaccession Programming Period 2004 when 2006. Between 2007 and 2013, support was provided only in Poland and Slovakia, the Czech Republic did not used the opportunity to open measure for new entities. Own analytical part is focused on measure evaluation through subject identification. Supported subjects were examined whether they follow main conditions of recognition or whether they fulfil main theoretical prerequisite for operation as marketing cooperative. Subject examination was based on own methodology that was developed on the bases of literature overview. Evaluation was based following indicators (i) share of marketed production on the total agricultural output of the country; (ii) market share on the relevant market and created value added. Results of the theses indicate, that part of supported producer groups were established solely in order to gain easy access to public money. Groups share on relevant market is negligible, goals of market concentration were not met. Groups value added is low. This fact is mainly caused by observed characteristics groups often does not own any investment assets, does not have any employees. After receiving last payment, groups were closed, transformed into other business activity or its ownership structure were changed In the Czech Republic. In Poland, established groups reach the lowest significant market share, subjects were closed and reestablished to source subsequent support. Slovak groups that reached on support from Programming Period 2007 when 2013 evince negative value added as their trading margin was negligible or null.

Analysis of water requirements of the field crops in areas with frequent occurrence of drought.
Zábranský, Petr ; Soukup, Josef (advisor) ; Jan, Jan (referee)
Summary Water resources are an important part of ecosystems. In the water balance of the landscape, the variability of climate, soil factors, as well as high diversity of vegetation play an important role. Evapotranspiration represents a major passive component in the water balance of the basin. Unlike forests, where the water balance is particularly predictable due to the long-term development of the stands, regular crop rotation in agricultural systems and agricultural practices may cause rapid changes in water balance during much shorter time. It may sometimes result in irreversible changes in ecosystems with impact on landscape biodiversity. An understanding of the limiting environmental factors and exact determination of the water demands of plants makepossible not only an improvement of yield parameters, but it is also condition for understanding of the agroecosystems sustainability in the cultural landscape. Field measurements of actual evapotranspiration were carried out in the period 2007 to 2015 in Velvary (Budihostice) in the Central Bohemia region, 210 m above sea level in the rain shadow area around Slaný territory. In terms of the average annual water balance (CHMI, 2014), the locality is regarded as the area with the difference between the average annual precipitation and annual potential evapotranspiration totals in amount of -200 mm, so the potential evapotranspiration slightly exceeds precipitation. Field measurements were conducted on commonly managed areas with a minimum size of the experimental plots of 1 ha. The measurements confirmed differences between the crop water demands during the growing season. Different values of the actual evapotranspiration as well as the Bowen ratio values were estimated for the observed crops depending on the growth stage of crops. The lowest values of actual evapotranspiration were detected for Zea mays and Sorghum bicolor. Higher water demands were shown by Triticum aestivum and Hordeum vulgare. On the contrary, the highest values of actual evapotranspiration were found in stands of Beta vulgaris and Medicago sativa. According to the values obtained for crop coefficients (Kc), the crops of Z. mays, S. bicolor and T. aestivum had about a quarter lower values of Kc compared with M. sativa and B. vulgaris crops in the main growing season. In this work, the daily values of Kc, which are the basic characteristics of moisture requirements for individual crop were determined and can be used modelling of hydrological processes in agro-phytocoenoses. The evaluation of moisture requirement of crops by the water flow in plants (determined by the sap flow method) showed the expected differences between S. bicolor and Z. mays plants. Water use efficiency (WUE) was significantly higher in plants of C4 type (Z. mays and S. bicolor) compared with the rest of observed plants of C3 type (T. aestivum and H. vulgare).

Evaluation of information security in information systems
Urbanec, Jiří ; Toman, Prokop (advisor) ; Vlasta , Vlasta (referee)
Information is a valuable asset for organizations and a source of competitive advantage nowadays. Therefore it is necessary to retain information security characteristics of processes and systems in required limits and continuously evaluate the state using measurement. The problem in measurement shows to be in the selection of suitable characteristics and measures of the processes or the products, which are subject to measurement.The main aim of the dissertation thesis is to design methodic for evaluating information security in information systems and formulate conclusions and recommendations for its use in practice. The situation in The Czech Republic was obtained based on a quantitative survey in which data was collected by means of a questionnaire survey (N=785; n=101) and qualitative research was conducted in the 3 organizations from financial sector in the Czech Republic. Results showed that at present an absolute majority of surveyed organizations evaluate information systems from the perspective of risk to valuable information (58.49%). Organizations evaluating information security are most often to identify weaknesses and emerging issues (41.5%). Only a 17.6% of them measure. The designed methodic identifies behavioral model of the organization, defines measurable characteristics of the system and the organization based on extended security model, defines process of development of the measures based on GQM tool, engages measurement process compatible with ISO 27004 and presents evaluation procedure using measured values. The proposed procedures and constructs focused on improvement of field detected by the survey, the "information classification" and "difference between perception of information value between owner and processor". The procedures were validated on two anonymous organizations and are presented in form of case studies. One of the conclusions is, that proposed methodic is applicable mostly in organizations with strong technical and financial base, where it is possible to overcome requirements of measures development processes and measurement application. Also the methodic of evaluation has its own limits of applicability.

The analysis of the weather impact on the shape and shift of the production frontier
Hřebíková, Barbora ; Čechura, Lukáš (advisor) ; Peterová, Jarmila (referee)
Although weather is a significant determinant of agriculture production, it is not a common practice in production analysis to investigate on its direct impact on the level of final production. We assume that the problem is methodological, since it is difficult to find a proper proxy variable for weather in these models. Thus, in the common production models, the weather is often included into a set of unmeasured determinants that affects the level of final production and farmers productivity (statistical noise, random error). The aim of this dissertation is to solve this methodological issues and find the way to define weather and its impacts in a form of proxy variable, to include this variable into proper econometric model and to apply the model. The purpose of this dissertation is to get beyond the empirical knowledge and define econometric model that would quantify weather impacts as a part of mutually (un)conditioned factors of final production, to specify the model and apply it. The dissertation is based on the assumption that the method of stochastic frontier analysis (SFA) represents a potential opportunity to treat the weather as a specific (though not firm-controllable) factor of production and technical efficiency. SFA is parametric method based on econometric approach. Its starting point is the stochastic frontier production function. The method was presented in the work of Aigner, Lovell and Schmidt (1977) and Meusen and van den Broeck (1977). Unlike commonly used econometric models, SFA is based on analysis of production frontier that is formed by deterministic production frontier function and the compound error term. The compound error term consists of two parts -- random error (statistical noise, error term) and technical inefficiency. Technical inefficiency represents the difference in the actual level of production of the producer, and the maximum attainable (possible) level that would be achieved if the producer used a particular combination of production factors in a maximum technically efficient way. Over time, it has been developed on a number of aspects - see time variant and invariant inefficiency, heteroscedasticity, measurement and unmeasured heterogeneity. Along with the DEA, SFA has become the preferred methodology in the area of production frontier and productivity and efficiency analysis in agriculture. Lately, it has been applied for example by Bakusc, Fertő and Fogarasi (2008) Mathijs and Swinnen (2001), Hockmann and Pieniadz (2007), Bokusheva and Kumbhakar (2008) Hockmann et al. (2007), Čechura a Hockmann (2011, 2012), and Čechura et al. (2014 a, b). We assume that the weather impacts should be analysed with regard to technical efficiency, rather than as a part of statistical noise. Implementation of weather in part of deterministic production function rather than in the statistical noise is a significant change in the methodical approach within the stochastic frontier analysis. Analysis of the weather impacts on the changes in the level of TE has not been greatly recorded in the associated literature and is, therefore, considered as the main contribution of this work for the current theory of production frontier estimation, or the technological effectiveness, in the field of agriculture. Taking into account other variables that are important for the relationship and whose inclusion would enhance the explanatory power of the model was part of the objective of this work.Thus, the possible effect of heterogeneity was taken into account when models were formulated and final results discussed. The paper first defined and discussed possible ways how to incorporate the effects of the weather into production frontier model. Assessing the possibility of inclusion of weather in these models was based on the theoretical framework for the development of stochastic frontier analysis, which defines the concept of technical efficiency, distance functions theory, stochastic production function theory and the methodology and techniques that are applied within the framework of SFA, which were relevant for the purpose of this work. Then, the weather impacts on the shape and shift of production frontier and technical efficiency of czech cereal production in the years 2004-2011 was analyzed. The analysis was based on the assumption that there are two ways how to define variables representing weather in these models. One way is to use specific climatic data, which directly describe the state of the weather. For the purpose of this thesis, the variables mean air temperature (AVTit) and sum of precipitation (SUMPit) in the period between planting and harvest of cereals in the individual regions of Czech republic (NUTS 3) were selected. Variables were calculated from the data on monthly mean air temperatures and monthly sums of precipitation on the regional levels provided by Czech hydro-meteorological institute CHMI. Another way to define weather variable is to use a proxy variable. In this dissertation, the calculation of climatic index (KITit) was applied. Climatic index was calculated as a sum of ratios between the actual yield levels and approximated yield levels of wheat, barley and rye, weighted by the importance of each plant in a cereal production protfolio in each region of the Czech republic. Yield levels were approximated by the linear trend functions, yield and weights were calculated with the use of data on regional production and sown area under individual grains by year at the level of regional production (NUTS 3) provided by Czech Statistical Office. Both ways of weather definition are associated with some advantages and disadvantages. Particular climatic data are very precise specificatopn of the actual weather conditions, however, to capture their impacts on the level of final production, they must be implemented into model correctly along with the number of other factors, which have an impact on the level of final production. Climatic index, on the other hand, relates the weather impacts directly to the yield levels (it has been based on the assumption that the violation from yield trends are caused by the weather impacts), though, it does not accomodate the concrete weather characteristics. The analysis was applied on unbalanced panel data consisting of the information on the individual production of 803 producers specialized on cereal production, which have each the observations from at least two years out of total 8-years time serie. Specialization on crop production was defined as minimum 50% share of cereal production on the total plant production. Final panel consists of 2332 observations in total. The values of AVTit, SUMPit a KITit has been associated with each individual producer according to his local jurisdiction for a particular region. Weather impacts in the three specified forms were implemented into models that were defined as stochastic production frontier models that capture the possible heterogeneity effects. The aim is to identify the impact of weather on shift and shape of production frontier. Through the defined models, the production technology and technical efficiency were estimated. We assume that the proposed inclusion in weather impacts will lead to a better explanatory power of defined models, as a result of weather extraction from a random components of the model, or from a set of unmeasured factors causing heterogeneity of the sample, respectivelly. Two types of models were applied to estimate TE - Fixed management model (FMM) and Random parameter model (RPM). Models were defined as translogarithmic multiple-output distance function. The analyzed endogene variable is cereal production (expressed in thousands of EUR). Other two outputs, other plant production and animal production (both expressed in thousands of EUR) are expressed as the share on cereal production and they appear on the right side of the equation together with the exogene variables representing production factors labour (in AWU), total utilized land (in acres), capital (sum of contract work, especially machinery work, and depreciation, expressed in thousands of EUR), specific material (represented by the costs of seeds, plants, fertilisers and crop protection, expressed in thousands of EUR), and other material (in thousands of EUR). The values of all three outputs, capital, and material inputs were deflated by the the country price indexes taken from the EUROSTAT database (2005=100). In Random parameter model, heterogeneity is captured in random parameters and in the determinants of distribution of the technical inefficiency, uit. All production factors were defined as a random parameters and weather in form of KITit enters the mean of uit and so it represents the possible source of unmeasured heterogeneity of a sample. In fixed management model, heterogeneity is defined as a special factor representing firm specific effects, mi. This factor represents unmeasured sources of heterogeneity of sample and enters the model in interaction with other production factors and the with the trend variable, tit.Trend variable represents the impact of technological change at a time t for each producer i. The weather impacts in form of variables AVTit a SUMPit is, together with production factors, excluded from the set of firm specific effects and it is also numerically expressed. That way weather becomes a measured source of heterogeneity of a sample. Both types of models were estimated also without the weather impacts specification in order to obtain the benchmark against which the effects of weather impacts specification on production frontier and technical efficiency is evaluated. Easier interpretation of results was achieved by naming all five estimated models as follows: FMM is a name of fixed management model that does not include specified weather variables, AVT is a name for fixed management model including weather impacts in form of average temperatures AVTit, SUMP is name of model which includes weather impacts in form of sum of precipitations SUMPit, RPM is random parameter model that does not account for weather impacts, KIT is random parameter model that includes climatic index KITit into the mean of inefficiency. All estimated models fullfilled the conditions of monotonicity and kvasikonvexity for each production factor with the exception of capital in FMM, AVT, SUMP and RPM model. Violating the kvasikonvexity condition is against the theoretical assumptions the models are based on, however, since capital is also insignificant, it is not necesary to regard model as incorrect specification. Violation of kvasikonvexity condition can be caused by the presence of other factor, which might have contraproductive influence on final production in relation to capital. For example, Cechura and Hockann (2014) mention imperfections of capital market as possible cause of inadequate use of this production factor with respect to technological change. Insufficient significancy of capital can be the result of incorrect specification of variable itself, as capital is defined as investment depreciation and sum of contract work in the whole production process and not only capital related to crop production. The importance of capital in relation to crop production is, thus, not strong enough to be significant. Except of capital are all other production factors significant on the significancy level of 0,01. All estimated models exhibit a common pattern as far as production elasticity is concerned. The highest elasticity is attributed to production factors specific and othe material. Production elasticity of specific material reaches values of 0,29-0,38, the highest in model KIT and lowest of the values in model AVT. Production elasticity of other material reahed even higher values in the range 0,40-0,47. Highest elasticity of othe material was estimated by model AVT and lowest by model KIT. Lowest production elasticity are attributed to production factors labour and land. Labour reached elasticity between 0,006 and 0,129 and land reached production elasticity in the range of 0,114 a 0,129. All estimated models displayed simmilar results regarding production elasticities of production factors, which also correspond with theoretical presumptions about production elasticities -- highest values of elasticity of material inputs correspond with naturally high flexibility of these production factors, while lowest values of elasticity of land corresponds with theoretical aspect of land as relativelly inelastic production factor. Low production elasticity of labour was explained as a result of lower labor intensity of cereals sector compared to other sectors. Production elasticity of weather is significant both in form of average temperatures between planting and harvest in a given region, AVTit, and form of total precipitation between planting and harvest in a given region, SUMPit. Production elasticity of AVTit, reach rather high value of 0,3691, which is in the same level as production elasticities of material inputs. Production elasticity of SUMPit is also significant and reach rather high lower value of 0,1489. Both parameters shows significant impact of weather on the level of final crop production. Sum of production elasticities in all models reach the values around 1, indicating constant returns of scale, RS (RSRPM=1,0064, RSKIT=0,9738, RSSUMP =1,00002, RSFMM= 0,9992, RSAVT=1,0018.). The results correspond with the conclusion of Cechura (2009) and Cechura and Hockmann (2014) about the constant returns of scale in cereals sector in Czech republic. Since the value of RS is calculated only with the use of production elasticities of production factors, almost identical result provided by all three specifications of fixed management model is a proof of correct model specification. Further, the significance of technological change and its impact on final production and production elasticities were reviewed. Technological change, TCH, represents changes in production technology over time through reported period. It is commonly assumed that there is improvement on production technology over time. All estimated models prooved significant impact of TCH on the level of final production. All specified fixed management models indicate positive impaact of TCH, which accelerates over time. Estimated random parameter models gave contradicting results -- model KIT implies that TCH is negative and decelerating in time, while model RPM indicates positive impact of TCH on the level of final production, which is also decelerating in time. It was concluded, that in case that weather is not included into model, it can have a direct impact on the positive direction of TCH effect, which can be captured by implementing weather into model and so the TCH becomes negative. However, as to be discussed later, random parameter model appeared not as a suitable specification for analyzed relationship and so the estimate of the TCH impact might have been distorted. The impact of technological progress on the production elasticities (so-called biased technological change) is in fixed management models displayed by parameters representing the interaction of production factors with trend variable. The hypothesis of time invariant parameters (Hicks neutral technological change) associated with the production factors is rejected for all models except the model AVT. Significant baised technological change is confirmed for models FMM and SUMP. Biased technological change is other material-saving and specific material-intensive. In the AVT model, where weather is represented by average temperatures, AVTit, technological change is not significant in relation to any production factors. In both random parameter models, rejection of hypothesis of time invariant parameters only confirms significance of technological change in relation to final crop production. Nonsignificant effect of technological change on production elasticity of labor, land and capital indicates a generally low ability of farmers to respond to technological developments, which can be explained by two reasons. The first reason can the possible complications in adaptation to the conditions of the EU common agricultural market (eg. there are not created adequate conditions in the domestic market, which would make it easier for farmers to integrate into the EU). This assumption is based on conclusion made by Cechura and Hockmann (2014), where they explain the fact that in number of European countries there is capital-saving technological change instead of expected capital-using technical change as the effect of serious adjustment problems, including problems in the capital market.. Second possible reason for nonsignificant effect of technological change on production elasticity of labor, land and capital is that the financial support of agricultural sector, which was supposed to create sufficient conditions for accomodation of technological progress, has not shown yet. Then, the biased TCH is not pronounced in relation to most production factors. Weather impacts (SUMPit, AVTit) are not in significant relation to technological change. Both types of models, FMM and RPM were discussed in relation to the presence of the heterogeneity effects All estimated random parameters in both RPM models are statistically significant with the exception of the production factor capital in a model that does not involve the influence of weather (model RPM). Estimated parameter for variable KITit (0,0221) shows significant positive impact of the weather on the distribution of TE. That way, heterogeneity in relation to TE is confirmed, too, as well as significant impact of weather on the level of TE. Management (production environment) is significant in all three estimated fixed management models. In models that include weather impacts (AVT, SUMP), the parameter estimates indicates positive, slightly decreasing effect of management (or heterogeneity, respectivelly) on the level of final crop production. In model FMM, on the contrary, first and second order parameters of mangement indicate also significant, but negative and decelerating effect of management (heterogeneity) on final crop production. If weather impact is included into models in form of AVTit, or. SUMPit, the direction of the influence of management on the level of final crop production changes. Based on the significance of first order parameter of management, significant presence of heterogeneity of analyzed sample is confirmed in all three estimated fixed management models. As far as the effect of heterogeneity on single production factors (so called management bias) is concerned, the results indicate that in case of model that does not include weather impacts (model FMM) the heterogeneity has positive impact on production elasticities of land and capital and negative effect on the production elasticities of material inputs. In models that account for weather impacts, heterogeneity has negative effect on production elasticities of land and capital and positive effect on the elasticity of material inputs. Heterogeneity effect on the production elasticity of labor is insignificant in all models FMM. In all three estimated models, the effect of heterogeneity is strongest in case of production factors specific and othe material, and, also, on production factor land. In case of FMM model, heterogeneity leads to increase of production elasticity of land, while in AVT and SUMP heterogeneity leads to decrease of production elasticity of land. At the same time, the production elasticity of land, as discussed earlier, is rather low in all three models. This fact leads to a conclusion that in models that accomodate weather impacts (AVT and SUMP), as the effect of extraction of weather from the sources of unmeasured heterogeneity, the heterogeneity has a negative impact on production elasticity of land. It can be stated that the inclusion of weather effects into the sources of unmeasured heterogeneity overestimated the positive effect of unmeasured heterogeneity on the production factor land in the model FMM. Management does not have a significant effect on the weather in form of SUMPit, while it has significant and negative effect on the weather in form of average temperature, AVTit, with the value of -0.0622**. In other words, heterogeneity is in negative interaction with weather represented by average temperatures, while weather in form of the sum of precipitation (SUMPit) does not exhibit significant relation to unmeasured heteregeneity. In comparison with the model that does not include weather impacts, the effect of heterogeneity on the production elasticities has the opposite direction the models that include weather. Compare to the model where weather is represented by average temperature (model AVT), the effect of management (heterogeneity) on the production elasticity of capital is bigger in model with weather represented by sum of precipitations (model SUMP) while the effect of management (heterogeneity) on the production elasticity of land and material imputs is smaller in model with weather represented by sum of precipitations (model SUMP). Technical efficiency is significant in all estimated models. The variability of inefficiency effects is bigger than the variabilty of random error in both models that include weather and models where weather impacts are not specified. The average of TE in random parametr models reaches rather low value (setting the average TE = 54%), which indicates, that specified RPM models underestimate TE as a possible result of incorrect variable specification, or, incorrect assumptions on the distribution of the error term representing inefficiency. All estimated FMM models results in simmilar value of average TE (86-87%) with the simmilar variability of TE (cca 0,5%). Technological change has significant and positive effect on the level of TE in the model that does not specify the weather impacts (model FMM), with a value of 0,0140***, while in the models that include weather in form of average temperatures, or sum of precipitations, respectivelly, technological change has a negative effect on the level of TE (in model AVT = -0.0135***; in SUMP = -0.0114***). It can be stated, that in the model where the weather impacts were not specified, the effect of TCH on the level of TE may be distorted, because the parameter estimate implies also a systematic influence weather in the analyzed period. The effect of unmeasured heterogeneity on the level of TE is significant in all three estimated fixed management models. In models AVT and SUMP, heterogeneity has a positive effect on the level of TE (in AVT = 0.1413 and in SUMP =0,1389), while in the model that does not include weather variable the effect of heterogeneity on the level of TE is negative (in FMM =-0,1378). In models AVT and SUMP, the weather impacts were extracted from the sources of unmeasured heterogeneity, and so from its influence on the level of TE (together with other production factors weather becomes a source of measured heterogeneity). The extraction of the weather from the sources of unmeasured heterogeneity leads to change in the direction of heterogeneity effects on the level of TE from negative (in model where weather was part of unmeasured heterogeneity) to positive. The direct impact of weather on TE is only significant in case of variable AVTit, indicating that average temperatures reduce the level of TE (-0.0622**). Weather in form of sum of precipitations does not have a significant impact on the level of TE. It is evident that incorporating the effects of weather significantly changes the direction of the influence of management on the production of cereals and the direction of influence on the management of production elasticity of each factor in the final model. Analogically with the case of the influence of heterogeneity on the production elasticity of land, it is stated that the weather (included in sources of unmeasured heterogeneity) played a role in the underestimation of the impact of heterogeneity on the overall cereal production. Also, in case that weather was not extracted form the sources of unmeasured heterogeneity would play significant role in underestimation of the effect of heterogeneity on the level of TE. Based on the results of parameters estimates, and on the estimate of average values of TE and its variability, it is concluded, that the effect of inclusion of weather into defined models does not have significant direct impact on the average value of TE, however, its impact on the level of TE and the level of final crop production is pronounced via effects of unmeasured heterogeneity, from which the weather was extracted by its specification in form of AVTit a SUMPit. The analysis results confirms that it is possible to specify the impacts of weather on the shape and shift of production frontier, and, this to define this impact in a model. Results Aaso indicate that the weather reduces the level of TE and is an important source of inefficiency Czech producers of cereals (crop). The model of stochastic frontier produkction function that capture the weather impact was designed, thereby the goal of the dissertation was met. Results also show that unmeasured heterogeneity is an important feature of czech agriculture and that the identification of its sources is critical for achieving higher productivity and higher level of final output. The assumption about significant presence of heterogeneity in production technology among producers was confirmed, and heterogeneity among producers is a significant feature of cereal sector. By extracting weather from sources of unmeasured heterogeneity, the impact of real unmeasured heterogeneity (all that was not extracted from its sources) and the real impact of weather on the level of TE is revealed. If weather was not specified in a model, the TE would be overestimated. Model in form of translogarithmic multiple-output distance function well approximates the relationship between weather, technical efficiency, and final cereal production. Analysis also revealed, that the Random parameter model, which was applied in case that weather impacts were expressed as an index number, is not the suitable model specification due to underestimating of the average level of TE. The problem of underestimation of TE might be caused by wrong variable definition or incorrect assumptions about the distribution of inefficiency term. Fixed management model, on the other hand, appears as a very good tool for identification of weather impacts (in form of average temperatures and sum of precipitations in the period between planting and harvesting) on the level of TE and on the shape and shift of production frontier of czech cereals producers. The results confirm the assumption that it is important to specify weather impacts in models analyzing the level of TE of the plant production. By specification of weather impactzs in form of proper variables (AVTit, SUMPit), the weather was extracted from the sources of unmeasured heterogeneity. This methodical step will help to refine the estimate of production technology and sources of inefficiencies (or, the real inefficiency, respectivelly). That way, the explanatory power of model increase, which leads to generally more accurate estimate of TE. Dissertation has fulfilled its purpose and has brought important insights into the impact of weather on the TE, about the relationship between weather and intercompany unmeasured heterogeneity, about the effect of weather on the impact of technological change, and so the overall impact of weather specification on the shape and shift of production frontier. A model that is suitable application to define these relationships was designed. Placing the weather into deterministic part of production frontier function instead of statistical noise (or, random error, respectivelly) means a remarkable change in the methodical approach within the stochastic frontier analysis, and, due to the fact that the analysis of weather impacts on the level of TE to this extent has not yet been observed in relevant literature, the dissertation can be considered a substantial contribution to current theory of the estimate of technical efficiency of agriculture. The dissertation arose within the framework of solution of the 7th FP EU project COMPETE no 312029.

Monitoring of the backfat oxidative stability in relation to the source of unsaturated fatty acids in the feeding ration
Bezděková, Pavla ; Okrouhlá, Monika (advisor) ; Michaela, Michaela (referee)
Summary Pork is composed of 46 - 49 % of monounsaturated fatty acids, 40 % saturated fatty acids and 8 - 12 % of polyunsaturated fatty acids. The composition of fatty acids affects the strength of the tissues, their shelf life and quality (mainly taste). The development of fat tissues is characterized by hyperplasia and hypertrophy of fat cells. The quality of the adipose tissue associated with fatty acids. Monitored was 72 animals (36 of these pigs and 36 gilts). Pigs were divided into 2 experimental groups with 4 % addition of oil (rapeseed, soybean) and one control group, which was without the addition of oil. The animals were fed ad libitum complete feed mixtures, and for the whole period of fattening. In the control and experimental groups were used to compound feed for before fattening (P1) and fattening (P2). The pigs, which were in the experimental groups, was added to the feed mixture P2 oil (rapeseed or soybean), and 6 weeks before slaughter. In each group was assessed in 6 animals. Sampling was conducted from the backfat samples were homogenized and subjected to chemical analysis for the determination of fatty acids and oxidative stability. From the measurement results, it was found that rapeseed oil contained a fatty acids SFA, MUFA, n-3 PUFAs and higher ratios of S/P, M/P. Compared to the soybean oil contained more PUFA, n-6 PUFA, n-6/n-3 and M/P. In gilts was higher proportion of SFA in the fat of soybean oil and pigs to have more SFA from the oil of rapeseed. Oxidative stability of backfat increased tendences. Pigs had a higher oxidative stability of the fat in rapeseed oil compared to soybean, and gilts had higher values of oxidative stability of the fat in soybean oil. The measured values in the control group were lower in the oxidative stability of 0 compared to oils (rapeseed, soybean), but in the oxidative stability of 3 and 5 days were the highest.

The effect of castration method of pigs on growth, carcass value and pork quality
Chalupa, Josef ; Okrouhlá, Monika (advisor) ; Urbanová, Daniela (referee)
This thesis describes the issue related to the influence of pigs castration methods on their growth, slaughter value and meat quality. Nowadays, it is legal the surgical castration within anaesthesia in young boards, younger than 7 days. This method is the most used by pig breeders for several reasons, but especially it is neither financially or time demanding. Even though this surgical invention should be performed by veterinarian, but due to it simplicity it is performed by educated farm workers in practice. The problem will occur in 2018. In this year the surgical castration without anaesthesia will be prohibited because of animal pain and the effort to improve animal welfare. The main reason of piglet castration is the boar taint, which is connected to sexual maturation and hormone activity. The main substances, which caused the boar taint, are androstenone, skatole and indole. Androstenone is a steroid hormone produced in the testis with the typical urine like odor. Skatole is the substance with fecal odor and it is produced in the hind gut. Another reason for piglet castration is higher activity, even aggression in non-castrated pigs. The aggression is a negative effect causes injuries between animals. The next negative effect is the aggression against breeders. Based on these facts, there are numerous studies focused on possible solutions of this problem. There are describes surgical castration with local or total analgesia. The most practical, seems to be the local analgesia. Another method is the immune castration, where it is based on the hormone castration. There are applied 2 injections with the time lag. The first is applied in 13 to 16 weeks old pigs, the second in 21 to 22 weeks old pigs. The alternative method for relieving the pain is the boar fattening, where is important to decreased the aggression and level of boar taint by different methods. One of the methods is fattening pigs to lower slaughter weight (between 80 to 90 kg), or the breed choice. An interesting method is also sperm sexing, where is an effort for the highest female production. However, this method is not relevant for everyday practice, due to its difficulty.

Changes of proline concentration and electrolyte leakage in the selected species of the Panicoideae tribe under water deficit.
Nováková, Hana ; Hnilička, František (advisor) ; Václav, Václav (referee)
The theme of this thesis is the impact of water deficit on the concentration of proline and electrolyte leakage from representatives of the Panicoideae tribe. The impact of drought on agricultural production in the environment of the Czech Republic is currently an important issue. The exceptionall dry year of 2014/2015 and the associated water deficit in the soil had an impact mainly on the harvest of wide-row crops, including maize. Representatives of the Panicoideae tribe - sorghum and foxtail millet are the most drought-resistance crops in the world. Sorghum and foxtail millet belong to II. group of cereals like maize. Sorghum and foxtail millet show lower transpiration coefficient than maize, they also tolerates less demanding growing conditions and are more resistant to diseases and pests. They also compete with maize in a wide range of applications. It is therefore appropriate to determine how these crops respond to water deficit during their ontogenetic development. For the purposes of this experiment genotypes originating from conditions of temperate climate were selected, this genotypes have a shorter growing season. A short growing season is an important factor in the timing of the harvest of the late sown crops in our climate. The aim of the thesis was to determine and evaluate the impact of water deficit on the concentration of proline and electrolyte leakage in selected genotypes of sorghum and foxtail millet and on the basis of the results to select genotypes with high resistance to water deficit. Based on the aims the following hypotheses were set: to determine whether there are differences in the concentration of proline and electrolyte leakage between selected genotypes depending on the effect of water deficit and whether there are differences in these physiological characteristics in response to water deficit between sorghum and foxtail millet. To fulfill the objectives and evaluation the hypothesis was based on the greenhouse experiment with selected genotypes of sorghum and foxtail millet at the Department of Botany and Plant Physiology in the Czech University of Life Sciences Prague. The experiment included 4 genotypes of the species Sorghum bicolor (L.) Moench. (Sorghum): 1216, 30485, Barnard Red and Ruzrok and one variety of the species Setaria italica (L.) Beauv. (Foxtail millet) Ruberit. A total of 4 variants were designated for the experiment (one control and three under the influence of water deficit in different times). The plants in the control variant were full irrigated throughout the experiment. Variant KS was irrigated for the first 14 days, followed by 10 days without watering and the last 4 days were again irrigated. Plants in variant SK were under the influence of water deficit for the first 10 days of the experiment, then 18 days with watering and the plants in the variant SS were without watering for the first 10 days, for the next 4 days were without watering, then the same pattern was repeated: 10 days without and 4 days with watering. Physiological characteristics were observed in plants in the developmental stages BBCH 14-16. The concentration of proline was determined by measuring the absorbance of the samples formed by the reaction with ninhydrin. Subsequently, the measured values were compared with the calibration curve. To measure the sample absorbance at 520 nm a spectrophotometer Hellios gama (Thermo) was used. Electrolyte leakage on discs made from leafs was measured with electrical conductivity meter GRYF 158 (HB Griffin, Ltd.). The obtained results show that the proline concentration increased in response to water stress, since the highest concentration of proline was detected in plants growing in the most stressed variant of SS (670.13 micrograms) compared with other variants of stress. Plants variant KS (643.85 micrograms) showed a higher accumulation than the proline in variant SK (636.69 micrograms). The highest concentration of proline was measured on a genotype in the variety of sorghum Ruzrok (642.94 micrograms). The lowest content of proline was found in the variety of sorghum 1216 (623.78 micrograms), this value was also the only significant difference from the contents of proline to other genotypes. Which at least partly confirms the proposed hypothesis that there are differences in the content of proline between genotypes. The highest electrolyte leakage cell damage was respectively exhibited in plants from the variant SS (39.56%). Plants of the SK variant showed a higher rate of cell damage (32.95%) than plants from the variant KS (29.88%). The lowest cell damage was exhibited in plants grown under control conditions, which again indicates that damage cells increases in response to water deficit. In this experiment the highest degree of cell damage was found in the variety of sorghum 1216 (29.26%) and lowest cell damage was observed in the variety of sorghum Ruzrok (27.03%). A significant different degree of cell damage appeared only in the variety foxtail millet Ruberit (28.6%), which confirms our hypothesis that there are differences in the electrolyte leakage between sorghum and foxtail millet. The hypotheses were not fully confirmed by the experiment. Nevertheless, on the basis of obtained results we conclude that the least drought-resistance genotype is the 1216 variety and the best adapted to the water deficit was the Ruzrok variety. It also confirmed that the higher proline accumulation may protect the plant against the negative effects of water deficit on the cell membranes, which is then reflected in a reduced electrolyte leakage.

Imputation of missing genetic markers SNP
Kranjčevičová, Anita ; Přibyl, Josef (advisor) ; Jindřich, Jindřich (referee)
Working with genomic information in cattle breeding has become a standard procedure. This study is focused on completion of missing genetic markers - SNPs (single nucleotide polymorphisms) - on genetic chips. More specifically completion of missing values in datasets which contain pieces of information about SNP occurence in cattle genome. These polymorfisms are used for evaluation of genomic relationship, prediction of genomic breeding values and for the valuation of tested animals. The most common chips used for genotyping are Illumina and Affymetrix. Each company develops its own techniques of genotype obtaining. Affymetrix has unified coding type of SNPs among chips of different generations and thus even older data can be used. Illumina uses many coding types between different generations of chips. Thus, direct comparison of SNPs is not possible. Illumina has chips of different density and financial costingness. Illumina chips have become a standard all over the world and it is used by all breeding companies. The most used software programs for imputations are Beagle, AlphaImpute, Impute 2, FindHap, DAGPHASE, FImputePedImpute and MaCH. Each software requires a relationship between genotyped individuals. In common breeding business the genotyping is not in train of generations. That is why our own methodological process was used. The aim of this study is to map the current research about the completion of missing genetic markers on genetic chips and to verify the calculation process. In total, it was created 8 models with different amount of tested SNPs. From 10 to 100 neighbouring loci was tested. The testing was processed at chosen loci in two datasets. Dataset A contained 260 bull genotypes of different breeds from the Czech Republic. Dataset B contained 3982 genotypes of pure Holstein bulls from nine countries. In the first case a very good results were obtained. The prediction of missing values was almost accurate with model reliability 100%. The only exception was for almost entirely homozygous loci where the reliability reached only 55%. When the second dataset was tested, the most extensive model reached the reliability of 80 90% even in case of homozygous loci. The prediction error value was higher than in the first case. It was proven that missing values prediction is possible to calculate using the neighbouring SNPs. The outputs of this study are to be the base for further study of genomic data.

Analysis of the selection program for the White Shorthaired qoat in the Czech Republic
Holecová, Alena ; Přibyl, Josef (advisor) ; Vít, Vít (referee)
Selection program is a set of principles and practices for genetic improvement of animals. The aim of breeding is to ensure the desired level of production traits and thereby to influence the economic results of farming in favor of farmers. Genetic improvement is achieved by selecting the best individuals as parents for the next generation. The basis for the organization of a selection program are breeding goals, appropriate selection criteria and a system to performance record. Next step is the selection of the best individuals and their mating based on established principles. The quality of the selection program is given by the selection response in traits, maintaining the genetic diversity expressed by the rate of inbreeding and the economic profit. In the case of genetic resources, among which the White Shorthaired goat in the Czech Republic belongs, the emphasis is on maintaining the genetic diversity, but also for the economic gain, which increases the interest in the breed. The achieved genetic gain, the rate of inbreeding and economic profit are compared with the expected and in case of differences are the causes analysed and the program changed. In the breeding program for the White Shorthaired goat in the Czech Republic are set the breeding objectives and the performance record system. The organization of the mating ensures avoidance of the inbreeding. The breeding value is not estimated, the parents of the next generation are selected on the basis of measured gross phenotypic values for protein content in milk and of the exterior evaluation. It is not possible to evaluate the genetic progress. In the analysis of selection programs in chosen countries (France, Switzerland, Croatia, Slovenia, Germany and Austria), it was found that in all these countries is the breeding values of the animals estimated by using BLUP - Animal Model for production traits, exterior or fertility, or it is currently being prepared. I recommend to estimate the breeding value for the amount of milk, protein and fat for the White Shorthaired goat in the Czech Republic and create a selection index with emphasis on the amount of protein in milk as a base for the selection of the parents of the next generation. I also recommend the introduction of the linear exterior evaluation because of the possibility of a more precise evaluation of the exterior traits that are associated with the production traits, health, fertility and longevity, and estimating the breeding value in these indicators

Composition and checking of effectivity of the volumic training schedule for men
POKORNÝ, Jan
This work is focused on a composition and consequent checking of effectivity of the volumic training plan and simultaneously informs about the basis of body-building as a sports branch. The work is divided into 3 parts. The first part deals with general principles and patterns of the strengthening process. The second part devotes to the composition of the volume training itself and the third part tests its efectivity, obteins values and deals with the final evaluation.