National Repository of Grey Literature 114 records found  beginprevious21 - 30nextend  jump to record: Search took 0.01 seconds. 
Preparation and characterization of MoS2 thin films
Tomková, Renáta ; Zahradníček, Radim (referee) ; Bartoš, Miroslav (advisor)
This thesis deals with topological insulators, which are described by the quantum spin Hall effect, as well as on semiconductors, where the band structure of semiconductors and more specifically mentioned unipolar transistor MOSFET is explained. There are also mentioned primarily 2D materials and in particular of MoS2. Topic focuses on its structure, the electric properties, the use and preparation by using micromechanical exfoliation. In the last chapter it is described how to prepare MoS2 structures and their analysis. Structural properties of this material were measured by the AFM and Raman spectroscopy. The experimental part there are illustrative photograph of MoS2 taken with an optical microscope and spatial structures created by AFM.
Metabolism of Bacterial Cells and the Effect of Stress on Biosynthesis of PHA
Kučera, Dan ; Kráčmar, Stanislav (referee) ; Ondrejovič,, Miroslav (referee) ; Obruča, Stanislav (advisor)
This thesis deals with the study of polyhydroxyalkanoate biosynthesis as a microbial product with the potential to replace current conventional plastics made from petroleum. The dissertation thesis is elaborated in the form of a discussed set of already published publications, which are then part of the thesis in the form of appendices. The work builds on relatively extensive knowledge in the field of polyhydroxyalkanoate production and brings new facts and possible strategies. Various possibilities of analysis of polyhydroxyalkanoates using modern methods were tested in this work, which brings especially speed, which can be crucial in real-time evaluation of production biotechnological process. Raman spectroscopy has proven to be a very promising technique for rapid quantification of PHA. Furthermore, the work deals with valorisation of waste of food and agricultural origin. Emphasis is placed on methods of detoxification of lignocellulose hydrolysates. In this context, adsorption of inhibitors to lignin was first used as an alternative to other detoxification techniques. Due to detoxification, selected production strains Burkholederia cepacia and B. sacchari were able to utilize softwood hydrolyzate for PHA production. In the next part of the work was also tested the possibility of using chicken feathers as a complex source of nitrogen. Evolutionary engineering was also used as a possible strategy to eliminate the inhibitory effect of levulic acid as a microbial inhibitor that results from the hydrolysis of lignocellulosic materials. Adaptation experiments were used to develop strains exhibiting higher resistance to levulic acid and the ability to accumulate a higher 3HV copolymer from the original wild-type C. necator strain. Another promising approach tested in the work was the use of extremophilic microbial strain, which leads to a reduction in the cost of biotechnological production. Selected Halomonas species have shown high potential as halophilic PHA producers. The final part of the thesis was devoted to the selection of the production strain with regard to the properties of the resulting PHA. The Cupriavidus malaysiensis strain was selected to produce a P(3HB-co-3HV-co-4HB) terpolymer which revealed significant differences in material properties over P3HB.
Luminescence of semiconductors studied by scanning near-field optical microscopy
Těšík, Jan ; Klapetek, Petr (referee) ; Křápek, Vlastimil (advisor)
This work is focused on the study of luminescence of atomic thin layers of transition metal chalkogenides (eg. MoS2). In the experimental part, the work deals with the preparation of atomic thin layers of semiconducting chalcogenides and the subsequent manufacturing of plasmonic interference structures around these layers. The illumination of the interference structure will create a standing plasmonic wave that will excite the photoluminescence of the semiconductor. Photoluminescence was studied both by far-field spectroscopy and near-field optical microscopy.
Utilization of physico-chemical and spectroscopical methods in study on microbial extremofiles
Dobešová, Kateřina ; Enev, Vojtěch (referee) ; Sedláček, Petr (advisor)
The aim of this bachelor thesis is the determination od polyhydroxyalkanoates in the cells of extremophille bacterie, preformed by several methods. The chosen bacterium was Schlegelella thermodepolymerans DSM 15 344 Thermogravimetric analysis, infrared spectroscopy with Fourier transformation, and Raman spectroscopy were used in this thesis. The TGA method was used for the determination of extracellular and intracellular water in samples. The FTIR method was used in order to observe the amount od PHA, but aslo to observe the physical properties of the polymer in the sample, specifically to determine either amorphous or crystalline featuers of this polymer. Raman spectroscopy was used in oder to confirm the presence of PHA in the samples. All results e´were compared eith the results accomplished by gas chromatografy.
Scanning Near-field Optical Microscopy (SNOM)
Majerová, Irena ; Kvapil, Michal (referee) ; Dvořák, Petr (advisor)
A study of the optical properties of 2D materials has recently been the focus of the broad scientific community for its possible applications in nanophotonics and plasmonics. This bachelor thesis deals with the detection of photoluminiscence (PL) of 2D material (MoS2) by means of near-field scanning optical microscopy (SNOM). This PL is excited in the far-field by means of a focused green laser and in the near-field by surface plasmon polariton (SPP) interference. MoS2 flake monolayers are prepared using micromechanical exfoliation on various functional substrates (metal and dielectric). Characterization and quality of MoS2 monolayers is controlled using Raman optical spectroscopy. Furthermore, the experimentally obtained optical spectra of PL MoS2 are compared in a far-field using confocal optical microscopy and in the near-field using SNOM device, where in the near-field is observed a 3 times higher intensity PL of this 2D material than in the far-field
The preparation of Grafen by method CVD
Procházka, Pavel ; Kromka,, Alexander (referee) ; Mach, Jindřich (advisor)
This diploma thesis is mainly focused on the fabrication of graphene layers on the copper foil by the Chemical Vapor Deposition (CVD). For this purpose the high-temperature chamber for the production of the graphene was completed and fully automated. The production of the high area graphene on the copper foil was experimentally achieved. The Raman microscopy and X-ray photoelectron spectroscopy measurements proved that the produced graphene is mostly a monolayer. Graphene layer was transferred on non-conductive substrate.
Deposition and analysis of DLC thin films
Rudolf, Miroslav ; Čech, Vladimír (referee) ; Šikola, Tomáš (advisor)
Diplomová práce nastiňuje problémy spojené s výrobou a analýzou tenkých vrstev DLC:H. Tyto vrstvy jsou ve středu zájmu mnoha vědeckých pracovníků již po několik desetiletí. V současné době existuje mnoho technik pro přípravu a analýzu. Příprava DLC vrstev má zásadní vliv na jejich vlastnosti a možnosti použití. Je zde mnoho kritérií jak vrstvy posuzovat. V této práci jsou studovány vlastnosti DLC:H vrstev připravených na substrát krystalického křemíku metodou RF-PECVD a následně jsou studovány mechanické, tribologické a optické vlastnosti. Jsou zde využity techniky jako XPS, Ramanova spektroskopie, reflektometrie, měření tvrdosti a adheze. Část práce se zabývá modelováním DLC z prvních principů. Pro tento účel je využito prvoprincipiálního programu Abinit který je šířen pod GPL. Je studována otázka přípravy vstupních dat s ohledem na konvergenci výsledků. Pozornost je také věnována výpočtu vibračních spekter ve středu Brillouinovy zóny ( bod) a celkové hustotě elektronových stavů clusteru DLC v supercele tvaru krychle. Tyto výsledky mohou být porovnány s experimentálně získanými daty z Ramanovy spektroskopie, respektive z XPS spektra valenčního pásu
Preparation of graphene samples for experiments under UHV conditions
Mareček, David ; Mach, Jindřich (referee) ; Čechal, Jan (advisor)
This bachelor thesis deals with electrical conductivity of a graphene sample and preparation of a graphene field-effect transistor. In the theoretical part of the thesis, we describe electronic properties of graphene, preparation of graphene by CVD and its transfer to SiO_2. Experimental part of this thesis is focused on the preparation of a graphene field-effect transistor with long distance between Source and Drain electrodes. Thesis deals with a design of a chip expander for contact of graphene in UHV conditions. The last part describes measurement of dependency of graphene layer conductivity on the gate voltage with emphasis on the position of Dirac point during adjustments of the sample in UHV conditions.
Aplication of SPM in study and modification of ultrathin films Pt, Co and graphene
Lišková, Zuzana ; Červenka,, Jiří (referee) ; Bartošík, Miroslav (advisor)
This diploma thesis deals with the preparation of the very thin films and their investigation by scanning probe microscopy methods. The ultrathin films of Pt on Pt(111) were created by pulsed laser deposition and the ultrathin films of Co on Pt(111) were deposited by thermal evaporation. The coverage of the substrate was much smaller than one monolayer (in order of hundredths of monolayer). The nucleation theory was verified by these experiments using so-called Onset method. Further graphene sheets were prepared on layer of Si/SiO2 by the mechanical exfoliation from the graphite crystal. The fabricated graphene sheets were studied by micro-Raman spectroscopy, microreflectometry, atomic force microscopy and similar techniques. These methods proved the thinnest graphite layers were consisted of two graphene monolayers.
Study of influence of toxical and nutritional elements on cell metabolism using combination of Raman spectroscopy and Laser-Induced breakdown spectroscopy
Mazura, Martin ; Hrdlička, Aleš (referee) ; Prochazka, David (advisor)
In this work on-line discrimination of six bacteria strains by means of the Multivariate discrimination analysis (MVDA) is presented. Principal components analysis (PCA) was selected as most suitable technique. Two analytical methods – Laser-Induced breakdown spectroscopy (LIBS) and Raman spectroscopy were equipped for chemical analysis of bacteria strains. In order to obtain the best possible bacteria strains differentiation, the data from both methods was analyzed in two ways separately and together. The data from both measurements was normalized separately and afterwards combined in one data frame for simultaneous analysis. This data frame contained information from both analytical methods. Moreover an influence of cultivation period for each bacteria strain was studied. It was determined that Raman spectroscopy is able to discriminate two bacteria strains and LIBS even four bacteria strains. Using combination of both methods the complete discrimination was achieved. From information of first principal component it was determined that most valuable information in LIBS data is not included in different elemental composition but rather in influence of matrix effect. Solely the LIBS was utilized for studying the effect of cultivation period. It was possible to observe transformation of four bacteria strains within 24 hours. Based on results of this work it is possible to assume that combination of Raman spectroscopy and LIBS, because of the complementary information, is suitable for fast discrimination of different bacteria species and strains. Moreover it was determined that LIBS is able to observe the transformation caused by cultivation period.

National Repository of Grey Literature : 114 records found   beginprevious21 - 30nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.