Národní úložiště šedé literatury Nalezeno 185 záznamů.  začátekpředchozí21 - 30dalšíkonec  přejít na záznam: Hledání trvalo 0.17 vteřin. 
Thickness determination of a cathodoluminescence active nanoparticles by means of Quantitative STEM imaging
Skoupý, Radim ; Krzyžánek, Vladislav
Labeling of specimens by nanoscale probes is common approach of complex biological\nsystems exploration. Namely gold nanoparticles immuno-staining is well established method\nin electron microscopy. However, if more than two label sizes are used, the differentiation of\nindividual nanoparticles becomes difficult.\nThis can be overcome by cathodoluminescence (CL) active particles – nanophosphors where\nlabels recognition is done by wavelength of emitted light. This gives a great opportunity to\nuse advanced multi probe labeling within one sample.\nThere is a huge variety of nanophosphors: green fluorescent protein, quantum dots, ZnO\nnanoparticles, organic molecules, rare earth-doped nanophosphors etc. Therefore, in order\nto choose best type of nanophosphors for a given task, it is important to measure particles\nsize/thickness, as the CL intensity is proportional to the probe volume.
Creation of electron vortex beams using the holographic reconstruction method in a scanning electron microscope
Řiháček, Tomáš ; Horák, M. ; Schachinger, T. ; Matějka, Milan ; Mika, Filip ; Müllerová, Ilona
Electron vortex beams (EVB) were theoretically predicted in 2007 and first experimentally\ncreated in 2010. Although they attracted attention of many researchers, their\ninvestigation takes place almost solely in connection with transmission electron microscopes (TEM). On the other hand, although scanning electron microscopes (SEM) may provide some advantages for EVB applications, only little attention has been dedicated to them. Therefore, the aim of this work is to create electron vortices in SEM at energies of several keV.
Electron optical properties of a new low-energy scanning electron microscope with beam separator
Radlička, Tomáš ; Kolařík, V. ; Oral, Martin
The low energy scanning electron microscope (SEM) which is currently at the Institute of\nScientific Instruments, suffers from low resolution and suboptimal detections systems. In the cathode lens regime, signal electrons are accelerated by the electric field between the sample and the objective lens, getting collimated. Those with low emission angles get through the bore in the BSE detector into the objective lens and cannot be detected by the available detectors now. The information about the sample provided by these electrons is lost, which limits our microscopy methods.\nThese two limitations are to be overcome with a new low-energy SEM, which was developed\nat Delong Instruments. It consists of a field emission gun with the energy width of 0.8 eV, a magnetic condenser lens, and an electrostatic triode objective lens. The acceleration voltage is 5 kV. The sample stage can be biased at up to -5 kV to provide low landing energy without strong decrease of the resolution – the effect of the cathode lens. A beam separator is placed in front of the deflection system for the detection of the signal electrons that get to the column. In a combination with standard detectors and cathode lens, it allows detecting all\nkinds of signal electrons.
Thermal desorption spectroscopy in prototype furnace for chemical vapor deposition
Průcha, Lukáš ; Daniel, Benjamin ; Piňos, Jakub ; Mikmeková, Eliška
Cleaning of the sample surfaces is crucial for scanning electron microscopy, especially for\nlow energy electron microscopy or for the deposition of thin layers, such as graphene,\nwhere surface has to be well prepared. In the best case, every unwanted particle should be\ncleaned from the sample surface for best low energy electron microscopy observation or thin\nfilm deposition. Unfortunately, the standard cleaning procedures can leave residues on the\nsample surface. This work is focused on thermal desorption spectroscopy (TDS). TDS is a method of observing desorbed molecules from a sample surface during the increase of\ntemperature of the sample. The aim of this study was to determine optimum conditions:\ntemperature and time, to achieve clean surfaces in the shortest time.
Optofluidic techniques for directed evolution of enzymes
Pilát, Zdeněk ; Ježek, Jan ; Samek, Ota ; Zemánek, Pavel ; Buryška, T. ; Damborský, J. ; Prokop, Z.
Enzymes are highly versatile and ubiquitous biological catalysts. They can greatly accelerate\nlarge variety of reactions, while ensuring appropriate catalytic activity and high selectivity.\nThese properties make enzymes attractive biocatalysts for a wide range of industrial and\nbiomedical applications. Over the last two decades, directed evolution of enzymes has\ntransformed the field of protein engineering.
Possibilites of a secondary electrons bandpass filter for standard SEM
Mika, Filip ; Pokorná, Zuzana ; Konvalina, Ivo ; Khursheed, A.
Secondary electron filtering in Scanning Electron Microscope (SEM) has been in use for over\na decade. This technique uncovers interesting contrasts in an otherwise ordinary SEM image\nwhich can possibly be used for dopant concentration mapping or for discerning the slight molecular weight differences in apparently homogeneous organic materials. Secondary\nelectron filtering of semiconductor samples seems very promising as it may shed light on the mechanism of SEM image contrast between p-doped and n-doped semiconductors, possibly\nallowing to determine dopant concentration from SEM image alone.
Stable Ce4+ centres - a tool to optimize cathodoluminescence performance in garnet scintillators
Lalinský, Ondřej ; Schauer, Petr ; Rathaiah, M. ; Kučera, M.
Garnet single crystals are widely used as scintillators in electron detectors. Cerium activated lutetium aluminum garnet Cex:Lu3-xAl5O12 (LuAG:Ce) is a promising example of such material for these applications. This is mainly due to its high light yield (LY) of 25 kph/MeV, short decay time of 60–80 ns, high atomic density (6.7 g/cm3), and high radiation stability with no hygroscopicity. The cathodoluminescence (CL) performance can be improved by Ga and Gd doping the garnet matrix. Proper admixture of these elements can increase the LY to 50–60 kph/MeV in addition to eliminating unwanted slower decay components. There was an idea that further decay acceleration can be achieved by doping the garnet with monovalent (Li+) or divalent ions (Mg2+, Ca2+). This should increase the valency of some Ce3+ centres to Ce4+ which should better compete with electron traps, and thus accelerate the decay. Our previous work proved the same decay trend, however, at a price of the LY. Such LY loss may induce the idea, if the stable Ce4+ centres are really participating in Ce3+ emission.
STEM modes in SEM
Konvalina, Ivo ; Paták, Aleš ; Mikmeková, Eliška ; Mika, Filip ; Müllerová, Ilona
The segmented semiconductor STEM detector in the Magellan 400 FEG SEM microscope\n(https://www.fei.com/) is used to detect transmitted electrons (TEs) and allows observing\nsamples in four imaging modes. Two modes of objective lens, namely high resolution (HR)\nand ultra-high resolution (UHR), differ by their resolution and by the presence or absence of\na magnetic field around the sample. If the beam deceleration (BD) mode is chosen, then\nan electrostatic field around the sample is added and two further microscope modes HR + BD\nand UHR + BD, become available. Trajectories of TEs are studied with regard to their angular\nand energy distribution in each mode in this work.\n
Hiding e-beam exposure fields by deterministic 2D pattering
Horáček, Miroslav ; Knápek, Alexandr ; Matějka, Milan ; Krátký, Stanislav ; Urbánek, M. ; Mika, Filip ; Kolařík, Vladimír
The high stability and good current homogeneity in the spot of the e-beam writer is crucial to\nthe exposure quality, particularly in the case of large-area structures when gray-scale\nlithography is used. Even though the deflection field distortion is calibrated regularly and\nbeam focus and beam astigmatism is dynamically corrected over the entire deflection field, we can observe disturbances in the exposed relief.\nRecently, we presented a method that makes use of e–beam exposure imperfection by\nintroducing marginally visible high–frequency diffraction gratings of variable pitch that fill in\nseparate orthogonal exposure fields. The actually presented approach follows up our\nresearch on aperiodic arrangements of optical primitives, especially on the phyllotactic–\nlike arrangement of sub–micron relief optical elements. This approach is extended from the\ndiffraction element arrangement to the higher level of exposure fields arrangements.
Field emission from W5O14 nanowires
Saqib, M. ; Knápek, Alexandr ; Jelenc, J. ; Pirker, L.
The W5O14 (O/W=2.8) nanowires are metallic oxides with specific resistivity of 25 microOhm/cm and\ndiameters bellow 100 nm [1]. They were synthesized by iodine transport method using nickel\nas a growth promoter and WO3 as source of tungsten and oxygen. The field emission\ncharacteristics of single nanowires [2] and the films composed of these nanowires have been\nreported [3]. The emitting current densities up to 6.4 mA/cm2 have been obtained at relatively\nlow average electric field of about 3 V/Ohm*m. The samples were allowed to emit for more than\n100 hours without showing significant decays of the emitting current and without substantial\ncurrent oscillations. Here, we present field emission properties of single W5O14 nanowires\nexposed to two ranges of average electric fields (0.7–0.85 V/Ohm*m and up to 37–39 V/Ohm*m.

Národní úložiště šedé literatury : Nalezeno 185 záznamů.   začátekpředchozí21 - 30dalšíkonec  přejít na záznam:
Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.