National Repository of Grey Literature 55 records found  beginprevious16 - 25nextend  jump to record: Search took 0.00 seconds. 
Mercury Electrodes as Tools for Voltammetric Determination of Biologically Active Organic Compounds and for Detection of Their Interaction with DNA
Horáková, Eva ; Vyskočil, Vlastimil (advisor) ; Ludvík, Jiří (referee) ; Vytřas, Karel (referee)
The main aim of this work was to use traditional mercury electrodes for the development of voltammetric methods of determination of organic xenobiotics and for the electrochemical study of the interaction between double-stranded deoxyribonucleic acid (DNA) and these compounds. In relation to my previous research work (conducted in the framework of my diploma thesis), firstly, 4-nitrobiphenyl (4-NBP), the suspected carcinogen, was studied. Interaction of DNA with 4-NBP was studied using differential pulse voltammetry (DPV), cyclic voltammetry (CV), and chronocoulometry at a hanging mercury drop electrode (HMDE), and using CV and alternating current voltammetry at a DNA modified HMDE. Using CV, the reduction mechanism was investigated. The interaction of DNA with 4-aminobiphenyl (4-ABP), a metabolite of 4-NBP, and 4-NBP reduction intermediates was studied. It was found that the interaction of DNA with 4-NBP or 4-ABP results in a formation of a DNA aggregate with these analytes. The second studied analyte was methyl violet 2B (MV). For determination of MV in a buffered solution were used: direct current tast polarography and differential pulse polarography at a dropping mercury electrode, and direct current voltammetry, DPV, and differential pulse adsorptive stripping voltammetry (DPAdSV) at HMDE. The...
DNA-protein covalent complexes detection as the means for the assessment of the DNA damage induced by topoisomerase poisons.
Karešová, Aneta ; Jirkovská, Anna (advisor) ; Fikrová, Petra (referee)
Charles University in Prague Faculty of Pharmacy in Hradec Králové Department of Biochemical Sciences Candidate: Aneta Karešová Supervisor: PharmDr. Anna Jirkovská, PhD. Title of diploma thesis: DNA-protein covalent complexes detection as the means for the assessment of the DNA damage induced by topoisomerase poisons. Topoisomerase II is essential cellular enzyme, which modifies the secondary structure of DNA. By introducing a temporary double strand break to DNA it relieves a structural tension raised during transcription and translation. Absolutely indispensable is the role of topoisomerase II in the separation of sister chromatids synthesized in the S-phase of the cell cycle. The mechanism of DNA cleavage involves a covalent bond formed between active site tyrosine and 5' phosphate on both of the DNA strands and through the formed break the other strand or the other DNA molecule can pass. After that, the DNA strands are rejoined and topoisomerase II is detached. The indispensability of topoisomerase II mainly for proliferating cells makes it a great target for the antineoplastic drugs and the molecules belonging to the class of topoisomerase II inhibitors (etoposide, anthracyclines) are amongst the most useful anticancer drugs in the clinical practice. These clinically used "topoisomerase...
Potenciální využití WIP1 fosfatasy v terapii nádorového onemocnění prsu
Pecháčková, Soňa ; Macůrek, Libor (advisor) ; Souček, Pavel (referee) ; Krejčí, Lumír (referee)
Cells in our body respond to genotoxic stress by activation of a conserved DNA damage response pathway (DDR). Depending on the level DNA damage, DDR signaling promotes temporary cell cycle arrest (checkpoint), permanent growth arrest (senescence) or programmed cell death (apoptosis). Checkpoints prevent progression through the cell cycle and facilitate repair of damaged DNA. DDR represents an intrinsic barrier preventing genome instability to protect cells against cancer development. WIP1 (encoded by PPM1D) phosphatase is a major negative regulator of DDR pathway and is essential for checkpoint recovery. This thesis contributed to the understanding of molecular mechanisms of WIP1 function and revealed how WIP1 can be involved in tumorigenesis. Firstly, we described that WIP1 protein levels decline during mitosis by APC-Cdc20 dependent proteasomal degradation. WIP1 is phosphorylated at multiple residues which inhibit its enzymatic activity. We propose that inhibition of WIP1 in mitosis allows sensing of low levels of DNA damage that appear during unperturbed mitosis. Further, we identified novel gain-of-function mutations of PPM1D which result in expression of C-terminally truncated WIP1. These truncated WIP1 variants are enzymatically active and exhibit increased protein stability. As result, cells...
Defects in DNA repair and RNA metabolism associated with human neurological disorders
Cihlářová, Zuzana ; Hanzlíková, Hana (advisor) ; Čermák, Lukáš (referee) ; Roithová, Adriana (referee)
The human genome is constantly under the attack by various damaging agents, leading to the breakage of one or both strands of DNA that might interfere with RNA processing. Importantly, our cells have evolved diverse mechanisms to rapidly repair various DNA lesions, highlighting the importance of genetic integrity. Defects in DNA repair and/or RNA metabolism can lead to a variety of human hereditary diseases, with pathologies including growth and developmental defects, immunodeficiency, predisposition to cancer, and neurodegeneration. Mutations in the BRAT1 (BRCA1-associated ATM activator-1) protein have been associated with neurological disorders characterized by heterogenous phenotypes with varying levels of clinical severity ranging from microcephaly, hypertonia, epilepsy, seizures, and early death in the first two years of life to mild cerebellar atrophy and ataxia. Previously, BRAT1 protein has been implicated in the cellular response to DNA double-strand breaks and ATM signalling. However, the exact mechanism/s by which mutations in BRAT1 gene trigger neurological disorders are largely unknown. Recently, we have identified a homozygous missense c.185T>A (p.Val62Glu) variant in BRAT1 that markedly reduced the level of BRAT1 protein in patient-derived cell lines. Surprisingly, our data show that...
Mercury Electrodes as Tools for Voltammetric Determination of Biologically Active Organic Compounds and for Detection of Their Interaction with DNA
Horáková, Eva
The main aim of this work was to use traditional mercury electrodes for the development of voltammetric methods of determination of organic xenobiotics and for the electrochemical study of the interaction between double-stranded deoxyribonucleic acid (DNA) and these compounds. In relation to my previous research work (conducted in the framework of my diploma thesis), firstly, 4-nitrobiphenyl (4-NBP), the suspected carcinogen, was studied. Interaction of DNA with 4-NBP was studied using differential pulse voltammetry (DPV), cyclic voltammetry (CV), and chronocoulometry at a hanging mercury drop electrode (HMDE), and using CV and alternating current voltammetry at a DNA modified HMDE. Using CV, the reduction mechanism was investigated. The interaction of DNA with 4-aminobiphenyl (4-ABP), a metabolite of 4-NBP, and 4-NBP reduction intermediates was studied. It was found that the interaction of DNA with 4-NBP or 4-ABP results in a formation of a DNA aggregate with these analytes. The second studied analyte was methyl violet 2B (MV). For determination of MV in a buffered solution were used: direct current tast polarography and differential pulse polarography at a dropping mercury electrode, and direct current voltammetry, DPV, and differential pulse adsorptive stripping voltammetry (DPAdSV) at HMDE. The...
Novel Approaches in Electrochemical Determination of Xenobiotic Compounds and in Study of Their Interaction with DNA
Hájková, Andrea
Presented Ph.D. Thesis is focused on the development of analytical methods applicable for determination of selected xenobiotic compounds and for monitoring DNA damage they can induce. The main attention has been paid to the development and testing of non-toxic electrode materials for preparation of miniaturized electrochemical devices and novel electrochemical DNA biosensors. 2-Aminofluoren-9-one (2-AFN) was selected as a model environmental pollutant, which belongs to the group of hazardous genotoxic substances. Its carcinogenic and mutagenic effects may represent a risk to living and working environment. 2-AFN has one oxo group, where the cathodic reduction occurs, and one amino group, where the anodic oxidation occurs. The voltammetric behavior of 2-AFN in the negative potential region was investigated at a mercury meniscus modified silver solid amalgam electrode (m-AgSAE) representing a non-toxic and more mechanically robust alternative to mercury electrodes. This working electrode was subsequently used for the development of a newly designed miniaturized electrode system (MES), which has many benefits as the possibility of simple field measurements, easy portability, and the measurement in sample volume 100 µL. Moreover, a glassy carbon electrode (GCE) was used for further investigation of...
The impact of mutant huntingtin on oxidative stress in primary fibroblasts isolated from a new Huntington's disease knock in porcine model
Sekáč, Dávid ; Ellederová, Zdeňka (advisor) ; Hanzlíková, Hana (referee)
Huntington's chorea is a dominantly inherited disease caused by trinucleotide (Cytosine-Adenine -Guanine) expansion in a gene coding huntingtin protein. Carriers of these mutation show symptoms associated with motor impairment, a cognitive and psychiatric disturbance, which is called Huntington's disease (HD). The major sign of HD is striatal atrophy in the middle age of life. Since it is known that huntingtin protein participates in a lot of cellular processes, such as transcriptional regulation and metabolism, these processes change by its mutation. One of the features observed in HD pathogenesis is the presence of oxidative stress. The aim of the work was to monitor the molecular changes preceding the HD manifestation in the knock-in minipig model. As a material for monitoring molecular changes leading to this condition, primary fibroblasts were used. Whereas, the oxidative stress arises from an imbalance between oxidants and antioxidants, level of reactive species and lipid peroxidation together with expression of antioxidant response associated genes was measured. At the same time, expression of metabolic and DNA repair related genes was monitored. Although the differences in oxidative stress level or the expression of antioxidative response genes were not detected, the changes in the...
Role of skin stem cells in aging and regeneration
Hlaváčková, Tereza ; Nešporová, Kristina (advisor) ; Procházka, Jan (referee)
Skin is a natural and effective barrier of the body against the adverse effects of the external environment. Which, however, requires its constant regeneration and, in the event of damage, repair. Stem cells stored in the epidermis, hair follicles and dermis contribute to this. As with other stem cells, these are characterized by so-called stemness, ie the ability to self-renew and differentiate into other cell types, thus providing a source of cells for skin renewal. During aging, due to internal and external factors (mainly due to oxidative stress and DNA damage), the integrity and functionality of the skin barrier are lost. This process is related, among other things, to a reduction in the number and function of skin stem cells. Today several therapeutic approaches are being developed that use stem cells, but at the same time, it is clear that their origin also significantly affects their use. Therefore is necessary to have a good understanding of the specific properties of the function of skin stem cells to modulate the properties of the skin. This work aims to create a review of scientific literature, which covers the topic of skin stem cells, their role in the processes of regeneration and repair and their role in aging. The work will also address the issue of the skin or other types of stem...
Senescent cells and their elimination by the immune system
Novotný, Ondřej ; Reiniš, Milan (advisor) ; Mrázková, Blanka (referee)
Cell senescence is a type of cell cycle arrest in which the spectrum of the expressed genes changes specifically, also a change in the shape, size and other properties of a cell occurs. Senescent cells secrete a specific set of substances that affect the surrounding tissue, immune system and themselves. All this due to the induction of signalling pathways, inherent to individual types of senescence. The senescent cells accumulate in the body both during pathological conditions and during the natural process of aging and tissue renewal, with varying intensity depending on the type of tissue and organism. The consequence of their presence in the body is often ambivalent - for example, they are an effective mechanism of defence against tumour growth, but at the same time they can be its cause. The positive elimination of senescent cells usually has a positive effect - the immune system is responsible for this in vivo. Studies mapping the natural rate of accumulation and elimination of senescent cells in individual organs, together with new immunotherapeutic elimination procedures, are an important tool for developing new approaches to treating a wide range of human diseases and potentially to prolong human life.
Maintenance of chromosomes integrity in Giardia intestinails as a model organism.
Uzlíková, Magdalena ; Nohýnková, Eva (advisor) ; Lalle, Marco (referee) ; Stejskal, František (referee)
Giardia intestinalis is a protozoan causing diarrhea worldwide. Beside its medical importance, it is evolutionary distant protist with two nuclei within a cell adapted for parasitic life in the environment poor of oxygen. Its genome is small and compact in term of gene content and size. It is therefore an attractive model organism for studies of minimal requirements for cellular processes. Present work brings new partial information on different levels of chromosome integrity maintenance of this parasite. Our study presents characteristics of chromosome termini and their protection. We localized telomeres during all stages of the trophozoite cell cycle and determined the length of Giardia telomeres ranging from 0.5 to 2.5 kb, we proved an existence of an active telomerase enzyme synthesizing telomeric repeats in in this parasite, despite the fact that giardial telomerase is structurally divergent. Present data support the view that the chromosomal termini in Giardia are maintained in a conservative manner that is common to other eukaryotes. We described effects of commonly used drug for treatment of anaerobic infections, metronidazole, on DNA and cell cycle progression in susceptible and resistant cell lines. Incubation of cells with this drug causes phosphorylation of histone H2A in cell nuclei...

National Repository of Grey Literature : 55 records found   beginprevious16 - 25nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.