National Repository of Grey Literature 36 records found  previous11 - 20nextend  jump to record: Search took 0.01 seconds. 
The mechanism of action of anticancer drug ellipticin in target tissues of its effect
Mrízová, Iveta
Ellipticine is an alkaloid isolated from Apocynaceae plants exhibiting significant antitumor and anti-HIV activities. Cytochromes P450 (CYP) and peroxidases are the enzymes participating in metabolism of ellipticine. This process provides activation and detoxication metabolites of ellipticine. The CYP enzymes, which participate in oxidation of ellipticine in different tissues (liver, lung and kidney) of rat, a model organism simulating the fate of ellipticine in humans have already been identified. In this work, the effects of ellipticine on contents and catalytic activities of CYPs and other components of the mixed-function oxidase (MFO) system in this animal system were studied. For detection of contents of CYPs and other components of the MFO system, spectroscopic and electrochemical methods were used. To determine catalytic activities of CYPs and NADPH:cytochrome P450 reductase, reactions with specific substrates of these enzymes were utilized. The results found in this study demonstrate that expression and catalytic activity of CYP1A is induced by ellipticine in all of the tested organs (liver, kidney and lung) of rats treated with the drug. Moreover in liver, the cytochrome b5 expression is also induced. In addition, in this organ, expression and catalytic activity of CYP3A was increased by...
Study on impact of selected protein kinase inhibitors on drug resistance mediated by cytochromes P450
Janoušková, Adéla ; Hofman, Jakub (advisor) ; Novotná, Eva (referee)
Charles University Faculty of Pharmacy in Hradec Králové Department of Pharmacology & Toxicology Student: Adéla Janoušková Supervisor: RNDr. Jakub Hofman, Ph.D. Title of diploma thesis: Study on impact of selected protein kinase inhibitors on drug resistance mediated by cytochromes P450 Pharmacokinetic drug resistance often leads to failure of an anticancer therapy. One of the mechanisms is increased efflux of drugs from tumour cells, whereas some studies suggest that increased drug conversion to an inactive metabolite might be another contributing mechanism. The aim of this work was to define the possible role of CYP3A4 and CYP2C8 enzymes in the phenomenon of pharmacokinetic resistance and to investigate the possibility of its modulation by new targeted drugs. In the first part, we used the MTT proliferation method together with HepG2 cells stably transduced with particular human enzymes and demonstrated significant involvement of CYP3A4 in docetaxel resistance. In the following part, we examined the inhibitory effects of four selected tyrosine kinase inhibitors on the CYP3A4 activity in intact cells using a commercial kit. Cobimetinib and dabrafenib showed significant inhibitory activity, while osimertinib and brivanib did not. In the final part, we demonstrated the ability of the first two...
Metabolism of inhibitors of tyrosine kinases, the drugs of new generation
Čillíková, Olívia ; Indra, Radek (advisor) ; Kubíčková, Božena (referee)
Cancer is the second major cause of death after heart-attack in the world. In recent years, research has focused on tyrosine kinase inhibitors (TKIs) as part of targeted chemotherapeutic treatment. Vandetanib is a TKI affecting epidermal growth factor receptor (EGFR), rearrangement during transfection (RET) and vascular endothelial growth factor receptor 2 (VEGFR2). It is primary used for treatment of medullary thyroid cancer. Vandetanib is biotransformed by cytochromes P450 and flavin monooxygenases in human organism. Cytochromes P450 (CYPs) oxidaze vandetanib to only one metabolite, N-desmethyl vandetanib, which exhibits similar efficiency as parental molecule. NADPH is the major cofactor of reaction cycle of CYPs. This bachelor thesis studies the effect of various types of cofactors and pH on oxidation of vandetanib by selected human recombinant cytochromes P450, namely CYP2C8 coexpressed with cyt b5, CYP2D6, CYP3A4 and CYP3A4 coexpressed with cyt b5. Here, we investigate the effect of cofactors NADPH, NADH and their mixture in a 1:1 ratio on the amount of N- desmethyl vandetanib formed during the biotransformation of vandetanib. The effect of pH on the oxidation of vandetanib by CYP 3A4 and CYP 3A4 + b5 was also analysed. We analysed the amount of the metabolite formed at the pH range 7 to 8.5...
The effect of NADPH:cytochrome P450 reductase and cytochrome b5 on metabolism of vandetanib by cytochrome P450 3A5
Škriabová, Simona ; Indra, Radek (advisor) ; Mrízová, Iveta (referee)
There are several ways for cancer treatment. One of them is chemotherapy, when cancer patients are given a cytostatic or a combination of multiple types of drugs. The aim of this bachelor thesis was to study the metabolism of the anticancer drug vandetanib. Vandetanib is a tyrosine kinase inhibitor, that has been used in Europe since 2012 for treatment of symptomatic or progressive medullary thyroid cancer. The kinetics of vandetanib oxidation by cytochromes P450 3A5 was studied in this thesis. Oxidation was investigated by two different systems. The first were recombinant cytochromes P450 3A5 expressed in baculovirus-transfected insect cells (SupersomesTM ) and the second were human recombinant cytochromes P450 3A5 expressed in E.coli cells (Bactosomes). Furthermore, the effect of NADPH:CYP reductase and cytochrome b5 on vandetanib oxidation was investigated. Both systems formed the demethylated metabolite of vandetanib, N-desmethylvandetanib, which was separated by HPLC. The study of enzyme kinetics of vandetanib oxidation by human CYP3A5R, 3A5BR, 3A5BLR in Bactosomes indicates that two vandetanib molecules can bind into the active site of the enzyme, resulting in more efficient oxidation. The results also indicate that not only NADPH: CYP reductase, but also cytochrome b5 affects vandetanib...
Optimization of flavin monooxygenase activity assay
Hovorková, Adéla ; Dračínská, Helena (advisor) ; Heidingsfeld, Olga (referee)
Flavin monooxygenases, biotransformation enzymes catalyzing the oxidation of broad spectrum of xenobiotics, have long been overlooked compared to cytochromes P450, a larger group of biotransformation enzymes. Liver microsomes containing both flavin monooxygenases and cytochrome P450 are often used to study metabolism of xenobiotics. The catalytic aktivity of both enzymes may overlap due to the need of identical cofactors and it is therefore necessary to differentiate them appropriately. This bachelor thesis deals with the optimization of the method for the determination of enzyme activity of flavin monooxygenases in rat liver microsomes. Model reaction for optimization of the method was the oxidation of methyl p-tolyl sulfide to methyl p-tolyl sulfoxide. To determine the activity, the most suitable conditions were set: sample buffer with pH 9.5, 2 mM methyl p-tolyl sulfide and a 10 minute incubation time. It has been found that in the oxidation of methyl p-tolyl sulfide cytochromes P450 are also involved, mostly isoform 1A1. Various inhibitors of both of the above mentioned biotransformation enzymes (lipoic acid, methimazole, Brij 35 and Triton X-100) have also been tested. Brij 35 was selected as a suitable inhibitor of the catalytic action of cytochromes P450, because it had no effect on the rate...
Effect of tyrosine kinase inhibitor cabozantinib and cytotoxic alkaloid ellipticine on expression and activity of cytochromes P450 1A1, 1A2 and 1B1
Měkotová, Barbora ; Dračínská, Helena (advisor) ; Jeřábek, Petr (referee)
In recent years, tyrosine kinase inhibitors have been more and more used for the targeted cancer therapy, due to their ability to disrupt intracellular signalling pathways associated with the development of tumours. Cabozantinib is the tyrosine kinase inhibitor which has been approved for the treatment of thyroid cancer and it is also effective against several other types of cancer. However, multiple drugs combination is often used in anticancer therapy, which may result in their cytochrome P450-mediated interactions. Although this may affect the therapeutic effect of the drugs and cause adverse effects on the organism, very little is known about the effect of cabozantinib on biotransformation enzymes. Therefore, the effect of cabozantinib not only alone but also in combination with the known cytostatic ellipticine on the expression and the activity of cytochromes P450 1A1, 1A2 and 1B1 in rat liver and kidney in vivo was studied in this work. The gene expression was determined by quantitative PCR, the amount of protein was studied by Western blotting and consecutive immunodetection. The enzyme activity was studied using specific marker reactions, 7-ethoxyresorufin O-deethylation for CYP1A1, 7-methoxyresorufin O-demethylation for CYP1A2 and 17β-estradiol 4-hydroxylation for CYP1B1. Our results...
Study on the role of selected cytochrome P450 isoforms in cytostatic resistance at apoptosis level
Moriová, Magdalena ; Hofman, Jakub (advisor) ; Novotná, Eva (referee)
Charles University Faculty of Pharmacy in Hradci Králové Departement of Pharmacology & Toxicology Student: Magdalena Moriová Supervisor: RNDr. Jakub Hofman, Ph.D. Title of diploma thesis: Study on the role of selected cytochrome P450 isoforms in cytostatic resistance at apoptosis level Cytostatic resistance is one of the most problematic obstacles in oncological treatment. Beside pharmacodynamic mechanisms, pharmacokinetic factors play an important role in drug resistance as well. Enzymatic transformation of active substance to inactive metabolite in tumor cells probably belongs to these mechanisms, however, evidences concerning the relevance of this phenomenon are predominantly either indirect and/or affected by interference elements. Using comparative experiments with HepG2 cell lines with/without CYP3A4 overexpression, we focused on the evaluation of the role of this clinically important enzyme in the resistance against docetaxel. Methodologically, it was the assessment of apoptosis induction (activation of caspases 3/7, 8 and 9) using commercial luminescent kits. Our results suggest significant participation of CYP3A4 enzyme on the reduction of docetaxel anticancer efficacy after 48 h from treatment, whereas this effect was not recorded in earlier intervals. These findings perfectly correlate...
Study on impact of selected protein kinase inhibitors on drug resistance mediated by cytochromes P450
Janoušková, Adéla ; Hofman, Jakub (advisor) ; Novotná, Eva (referee)
Charles University Faculty of Pharmacy in Hradec Králové Department of Pharmacology & Toxicology Student: Adéla Janoušková Supervisor: RNDr. Jakub Hofman, Ph.D. Title of diploma thesis: Study on impact of selected protein kinase inhibitors on drug resistance mediated by cytochromes P450 Pharmacokinetic drug resistance often leads to failure of an anticancer therapy. One of the mechanisms is increased efflux of drugs from tumour cells, whereas some studies suggest that increased drug conversion to an inactive metabolite might be another contributing mechanism. The aim of this work was to define the possible role of CYP3A4 and CYP2C8 enzymes in the phenomenon of pharmacokinetic resistance and to investigate the possibility of its modulation by new targeted drugs. In the first part, we used the MTT proliferation method together with HepG2 cells stably transduced with particular human enzymes and demonstrated significant involvement of CYP3A4 in docetaxel resistance. In the following part, we examined the inhibitory effects of four selected tyrosine kinase inhibitors on the CYP3A4 activity in intact cells using a commercial kit. Cobimetinib and dabrafenib showed significant inhibitory activity, while osimertinib and brivanib did not. In the final part, we demonstrated the ability of the first two...
The effect of tyrosinkinase inhibitors vandetanib and lenvatinib and cytotoxic alkaloid ellipticine on biotransformation enzymes
Baráčková, Petra ; Dračínská, Helena (advisor) ; Václavíková, Radka (referee)
In recent years, tyrosine kinase inhibitors have been widely used for the treatment of certain tumors as so-called targeted therapy. Many studies are concerned with their metabolism and the role of enzymes in the biotransformation process, but very little is known about the impact of tyrosine kinase inhibitors on the expression and activity of biotransformation enzymes. Nevertheless modification of the expression and activity of enzymes may cause adverse interactions of co-administered drugs and their negative impact on the human body. This diploma thesis studies the effect of tyrosine kinase inhibitors vandetanib and lenvatinib and cytotoxic alkaloid ellipticine on biotransformation enzymes in a rat model organism in vivo. The aim was to characterize the effect of the investigated compounds on gene expression, protein expression and activity of cytochromes P450 (CYP) 1A1, 1A2 and 1B1 and flavin-containing monooxygenases FMO1 and FMO3 in renal and hepatic microsomes. Microsomes and RNA were isolated from kidneys of control rats and the pretreated rats. Western blot and immunodetection was used to compare the protein expression levels of studied enzymes in kidney and liver. By reverse transcription, cDNA was prepared from isolated RNA and used as a template for quantitative PCR to compare the...
Study of the mechanism of anticancer drug action on neuroblastomas
Černá, Tereza ; Stiborová, Marie (advisor) ; Souček, Pavel (referee) ; Mrízová, Iveta (referee)
Despite advances in cancer diagnosis and therapy, cancer is the second leading cause of death globally. The improvements of cancer treatment are the major challenge in this research. The aim of the thesis was studying of effects of two anticancer drugs ellipticine (Elli) and doxorubicin (DOX) on some cancer and healthy cell lines. Specific consideration was given to expand current knowledge about the metabolism and cytostatic effects of Elli in neuroblastoma cell lines. Another part of this study was focused on mechanisms contributing to the development of ellipticine-resistance in cancer cells and influence of histone deacetylase inhibitors on anticancer therapy was investigated. Moreover, the aim was to develop apoferritin (Apo) nanocarrier suitable for the active transport of cytostatics to cancer cells. Several essential data were found in this doctoral thesis. Anticancer efficiency of Elli depends on the CYP3A4-mediated metabolism in cancer. The CYP3A4 enzyme encapsulated into two nanoparticle forms, liposomes and SupersomesTM , was tested to activate ellipticine to its reactive species forming covalent DNA adducts. The formation of adducts seems to be dependent on concentrations of CYP3A4 in nanoparticle systems. A higher effectiveness of CYP3A4 in SupersomesTM than in liposomes to form...

National Repository of Grey Literature : 36 records found   previous11 - 20nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.