National Repository of Grey Literature 170 records found  previous11 - 20nextend  jump to record: Search took 0.01 seconds. 
Utilization of laser spectrometry for investigation of biological samples: combination of Raman spectroscopy and Laser-Induced Breakdown Spectroscopy (LIBS)
Kouřil, Jan ; Novotný, Karel (referee) ; Samek, Ota (advisor)
This diploma thesis deals with two spectroscopic methods - laser induced breakdown spectroscopy and Raman spectroscopy. These methods were used for analysis of alga Trachydiscus minutus, which was cultivated in copper sulfate solutions of various concentrations. First part of this thesis is dedicated to physics and measurements of laser induced breakdown spectroscopy, second part deals with Raman spectroscopy.
Analysis of biological significant substances
Maděránková, Denisa ; Rychtárik, Milan (referee) ; Roleček, Jiří (advisor)
Selected methods of Raman spectroscopy, like surface-enhanced Raman spectroscopy and single molecule Raman spectroscopy, are described in this diploma work. The basis of two methods for numerical modelling of optical properties of micro- and nanoparticles are prefaced. The methods are Discrete Dipole Approximation and Finite Difference Time Domain. Micro- and nanoparticles are used in surface enhanced Raman spectroscopy and other nanospectroscopic methods. Further, the main instrumentation needed for Raman spectroscopy is described. The first part of experimental section of this work is numerical modelling of photonic nanojet that occures behind dielectric microparticles. This phenomenon leads to a new technique of confocal microscopy with Raman spectra measuring. The second experimental section contains results of Raman spectra measurement with beta-carotene and surface-enhanced Raman spectra of beta-carotene in silver-sol solution.
Characterization of PVDF material in nanoscale resolution
Pisarenko, Tatiana ; Dallaev, Rashid (referee) ; Sobola, Dinara (advisor)
Tato práce se zabývá charakterizací nanovláken na bázi polyvinylidenfluoridu. Zaměření práce je na piezoelektrické vlastnosti vlákna, které jsou studovány metodou piezoelektrické silové mikroskopie. Takto byly měřeny dva typy odlišných vzorků, které se lišily v parametrech výroby. Odlišnosti vláken v jejich fázovém složení byly také zkoumány za využití Ramanovy spektroskopie a infračervené spektroskopie s Fourierovou transformací. Chemická analýza povrchu a jeho stavu proběhla pomocí rentgenové fotoelektronové spektroskopie. Různé uspořádání nanovláken spolu s jejich průřezem bylo pozorováno rastrovacím elektronovým mikroskopem za využití fokusovaného iontového svazku. Rovněž byla zkoumána smáčivost a kontaktní úhel povrchu vzorků s demineralizovanou vodou. Bylo zjištěno, že vyšší rychlost otáček válce během procesu elektrostatického zvlákňování má velmi významný vliv na jejich uspořádání a tím i na parametry ovlivňující tvorbu piezoelektrického jevu a dalších materiálových vlastností.
Raman spectroscopy of prokaryotic cells
Večeríková, Paula ; Bernatová,, Silvie (referee) ; Samek, Ota (advisor)
The presented bachelor‘s thesis deals with the Raman spectroscopy of bacterial cells. This method proves to be very suitable for monitoring the culture conditions of these bacterial strains because it is essentially non-destructive and fast compared to gas chromatography. Due to it‘s non-destructive nature, it is possible to further cultivate the measured cells. This analytical method can also be used to sort and select individual cells with increased ability to produce PHB. This would enable the possibility to select the generation of so-called PHB superproducers. Polyhydroxybutyrate (PHB) belongs to the group of polyhydroxyalkanoates (PHA), which serve as a substitute for plastics made in the petrochemical industry, whose consumption is increasing, especially during a pandemic. Current biodegradable substitutes are based on starch, which, in turn, depletes nutritional material for humans and animals. This bachelor thesis can serve as a basis outline for reducing the cost of PHB production, because Raman spectroscopy can be used in cell culture as a sensor of PHB content in response to a bacterial strain. In the experimental part of the work, the Raman spectra of selected bacteria were measured, where the result showed the greatest response to PHB in Chelatococcus shambunathi and the lowest in the thermophilic isolate BZ (Paenibacillus sp.). Quantitative information on the content of PHA in bacteria was obtained by gas chromatography, where the highest content was the bacteria- Chelatococcus shambunathi and the lowest Termobacillus composti. The subject of the second part was the separation of a mixture of PHA-producing and non-PHA-producing bacterial cultures. The result clearly proves that the mixture is separable based on the intensity of the selected sorting parameter.
Preparation of ultra sharp tips for STM TERS applications
Šilhan, Lukáš ; Man, Ondřej (referee) ; Jan, Vít (advisor)
The goal of this bachelor thesis is preparation of Au tips by electrochemical etching. The theoretical part deals with comparison of microscopy techniques for materials surface characterization and Raman spectroscopy. The experimental part is focused on the settings of optimal etching parametres to gain appropriate geometry of fabricated tips. Function of tips is verified by evaluation of data gained by experimental measuring with this tips. Prepared tips are suitable for applications such as STM and TERS.
Molecular modelling - Structure and Properties of carbene-based catalyst
Kulovaná, Eva ; Zmrzlý, Martin (referee) ; Richtera, Lukáš (advisor)
Molekulové modelování umožňuje předpovídat chování nových látek a napomáhá při jinak obtížné interpretaci experimentálních dat. Záměrem našeho studia byla predikce vybraných vlastností polymeračních katalyzátorů na bázi karbenů, predikce jejich struktur a spektrálních charakteristik. K ověření chování karbenů a jejich prekurzorů ve formě chloridů byly studovány vybrané charakteristiky molekuly. Byla provedena vizualizace vybraných molekulových orbitalů a map elektrostatických potenciálů a elektronových hustot. Následně pomocí počítačových programů byly získány teoretické vazebné délky a úhly vybraných imidazolových a imidazolinových sloučenin a z nich připravených karbenů. Data strukturně podobných, již charakterizovaných sloučenin, byla získána z CCDC (Cambridge Crystallographic Data Centre) a následně konfrontována s námi vypočítanými daty. Byla změřena infračervená (IČ) a Ramanova spektra imidazolové soli a IČ spektrum příslušného karbenu. Tato spektra byla konfrontována s napredikovanými.
Electrospun fibers based on PVDF and nylon
Černohorský, Petr ; Sobola, Dinara (referee) ; Papež, Nikola (advisor)
Polymer nanofibers used for the construction of triboelectric nanogenerator (TENG) and piezoelectric nanogenerator (PENG) are new and promising technologies for energy recovery. Thanks to the generation of electrical energy based on mechanical movement (deformation), these fibers can find application in the field of self-powered electronic devices. In this work, three nanofibrous structures of materials were prepared by electrostatic spinning: pure polyvinylidene fluoride (PVDF), pure polyamide-6 (PA6) and their mixed combination PVDF / PA6. Non-destructive analyzes such as Raman spectroscopy, FTIR, XPS and electron microscopy were used to study the properties of nanofibers. Analyzes confirmed the positive effect of electrostatic spinning of polymers on the support of the formation of highly polar crystalline -phase in PVDF and , -phase in PA6. The structure arrangement of the nanofibrous material and their defects were observed by scanning electron microscopy (SEM). Furthermore, the contact angle of the wettability of the liquid on the surface was measured for the materials, and the permittivity was measured to monitor the dielectric properties. The described results make the mixed material PVDF / PA6 very promising for further research in the field of nanogenerators and functional textiles.
Utilization of Raman spectroscopy and Raman tweezers for analysis and isolation of PHA producing bacteria
Beránková, Barbora ; Enev, Vojtěch (referee) ; Obruča, Stanislav (advisor)
This diploma thesis deals with the study of the utilization of Raman spectroscopy and Raman tweezers for analysis and isolation of polyhydroxyalkanoates (PHA) producing bacteria. Using gas chromatography with FID detection, we determined the polyhydroxybutyrate (P(3HB)) content of the PHA biomass of bacterial strains Burkholderia cepacia, Halomonas halophila, Cupriavidus necator H16 and its mutant strain Cupriavidus necator H16/PHB-4 and Lactobacillus delbrueckii, which is not a producer of polyhydroxyalkanoates but this bactrea was selected as representative of Gram-positive bacteria. Subsequently, thanks to Raman microspectroscopy, Raman tweezers and FT-IR spectrometer in combination with Raman FT-module, we were able to confirm or disprove the presence of P(3HB) in bacteria. Furthermore, the thesis describes Cupriavidus necator H16, which is a model organism for the production of P(3HB), and his mutant strain Cupriavidus necator H16/PHB-4. The bacterial strain Cupriavidus necator H16 was cultivated in a production mineral medium of various nitrogen contents, while cultivation was also carried out in liquid Nutrient Broth. By this cultivation we were able to reach various P(3HB) content in bacterial biomass, the spectra were subsequently compared with the spectrum of the bacterial strain Cupriavidus necator H16/PHB-4. Raman spectroscopy is well used to characterize the composition of individual bacterial cells, is a fast, versatile, and virtually non-invasive tool for studying cells.
Design of the carbon atomic source for deposition of graphene in UHV
Čalkovský, Vojtěch ; Bábor, Petr (referee) ; Mach, Jindřich (advisor)
This bachelor's thesis deals with the design of the atomic carbon source for deposition of graphene layers in UHV conditions. In the first part are briefly described the problems of epitaxial growth, the theory of atomic beams and theory of sublimation. The second part is aimed on graphene description, namely on his properties and on the growth of graphene layers, especially by molecular beam epitaxy. The third part contains brief description of detection and analysis methods of carbon atomic beams. In the practical part of this bachelor's thesis the design and the numeric calculations were made in Simion 8.0 and EOD program. Afterwards the atomic carbon source was constructed. In the conclusion are discussed the obtained results.
Analytical methods for determination of polyhydroxyalcanoates content in bacterial cells
Černayová, Diana ; Enev, Vojtěch (referee) ; Sedláček, Petr (advisor)
This bachelor thesis deals with methods that are used for determination of polyhydroxyalkanoates (PHA) in cells of bacteria Cupriavidus necator H16. To the applied methods belong Fourier transform infrared spectroscopy, Raman spectoscopy, turbidimetry and thermal analysis (thermogravimetric analysis and differential scanning calorimetry). The results of each method were compared to amount of PHA determinated by gas chromatography. Fourier transform infrared spectroscopy and Raman spectroscopy revealed a linear relation between ratio of characteristic peaks and amount of PHA. FTIR enabled to determine not only the quantitative amount of PHA, but the quality of the sample (cristallinity, amorphous state) as well. Another method was turbidimetry, which has shown correlation between dispersion of UV-VIS light to amount of PHA in bacterial cells. Thermogravimetric analysis was the most effective technique for determination of PHA. The dependence of weight loss of PHA on its content (found by gas chromatography) was determined with the highest accuracy to gas chromatography. Tha last method- DSC was not alternative replacement for quantitative PHA determination. However, DSC indicated crystalline and amorphous state of the polymer.

National Repository of Grey Literature : 170 records found   previous11 - 20nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.