National Repository of Grey Literature 341 records found  beginprevious119 - 128nextend  jump to record: Search took 0.00 seconds. 
Physico-chemical characterization of 3-hydroxybutyrate with respect to its bioprotective effects
Kahanovská, Kristína ; Smilek, Jiří (referee) ; Sedláček, Petr (advisor)
The main aim of the work was to verify bio-protective properties of 3-hydroxybutyrate (3HB) in terms of its effect on protein denaturation (especially lipase) and determine the physicochemical characteristics of 3HB that could lead to the explanation of the mechanism of its protective effect. The literature search focused primarily on the mechanism of the protective effect of the compatible solutes. The 3HB belongs to the group of compatible solutes. The protective effect of the 3HB was monitored by Dynamic Light Scattering (DLS). As the other parameters of the aqueous solution 3HB were determined: the dependence of the surface tension on the concentration of the 3HB, the effect of different 3HB concentrations on the zeta potential of the lipase. Hydrophobic and hydrophilic character of the 3HB was characterized with the log Kow parameter. A simple method for quantity determination of the 3HB aqueous solution was optimized. The method is based on conversion of the 3HB into crotonic acid by reaction with sulphuric acid at higher temperatures and on subsequent psectrophotometric determination of the amount of crotonic acid.
Methodology for experimental study on the release of humic acids from hydrogel application forms.
Palanová, Veronika ; Klučáková, Martina (referee) ; Sedláček, Petr (advisor)
Hlavnou náplňou bakalárskej práce bolo navrhnúť a optimalizovať metódu experimentálneho štúdia uvoľňovania huminovej látky z gelových matríc, ktoré boli vytvorené pomocou bežných kozmetických a farmaceutických zahusťujúcich látok. Pre štúdium uvoľňovania tejto aktívnej látky bola zvolená difúzna aparatúra vo vertikálnom usporiadaní, tzv. Francova cela. Výluhy gelových vzoriek boli podrobené spektrofotometrickým meraniam. Vzniklé interakcie medzi roztokmi lignohumátu a rôznych typov zahusťujúcich látok boli experimentálne stanovené. Celý proces optimalizácie metódy pre uvoľňovanie huminovej látky z gelových foriem bol diskutovaný.
Preparation and Characterization of Mechanical Properties of Artificial Synovial Liquids
Hrochová, Eliška ; Sedláček, Petr (referee) ; Kalina, Michal (advisor)
This bachelor thesis deals with the optimization of preparation of artificial synovial liquids. The main subjects of study are the mechanical properties of real and artificial synovial fluid samples. DLS microrheology, thermogravimetric analysis (TGA) and infrared spectroscopy (FTIR) were used for characterization. The theoretical part of this thesis is represented by a literature research of a methods of preparation of artificial synovia and summary of definitions of rheological terms. The experimental part focuses on the preparation and characterization of the artificial synovial liquids originating from the published patent US 8716204. In the framework of the bachelor thesis, this preparation was optimized in several partial steps (method of dispersion of components, choice of molecular weight of hyaluronic acid, nature and ionic strength of used dispersion medium). The prepared optimized sample of synovial fluid was in following experimental characterization steps compared in terms of material characteristics and mechanical properties with the real horse synovial fluid sample. By modifying the process based on the aforementioned patent, an artificial synovial fluid could be formed. That meets the viscoelastic nature of the real matrix and that is stable over time.
Development and characterization of hydrogel carriers for modern agricultural applications
Mai, Thuy Ha ; Kalina, Michal (referee) ; Sedláček, Petr (advisor)
The bachelor thesis is focused on characterization of hydrogel carriers and their application in agriculture. Entrapment of active phase within the hydrogel matrix would allow release of its content in controlled rate. The theoretical part describes encapsulation techniques and suitable biocompatible materials involved in encapsulation. For the experimental part, the release of soil bacteria Cupriavidus necator H16 from alginate matrix was examined. The focus was on the release rate of bacteria via diffusion and later, on the release rate of bacteria encouraged by chemical or enzymatic reagents. Further modification of carrier was suggested by adding hydrophobic barrier composed of polyhydroxybutyrate (PHB). The modified alginate beads seemed to be more resistant toward enzymatic or chemical agents, thus the process of the release was to some extent suppressed. This fact might suggest PHB as a possible vessel for optimization of controlled release system of hydrogel carriers.
Hydrogel carriers of microorganisms for modern environmental aplications.
Súkeník, Martin ; Slaninová, Eva (referee) ; Sedláček, Petr (advisor)
This bachelor thesis deals with the optimization of cultivation and gelation procedures by bacterium Azotobacter vinelandii, which belongs to a PGPR group, capable of synthesis of intracellular polyhydroxyalkanoates and extracellular alginate. The alginate produced by the bacteria is crosslinked with a calcium chloride solution to form a hydrogel carrier containing the described bacterium. This unconventional concept simplifies bacterial encapsulation and production of hydrogel carriers, furthermore expands its usability in modern environmental applications. In the first part of this thesis, three strains (DSM 85, 87, 720) were selected to measure a concentration of produced alginate, its molecular weight was determined by a SEC-MALS technique and M/G ratio was analysed by infrared spectroscopy. The Azotobacter vinelandii strain DSM 87 reached the highest concentration of the alginate (4.9 ± 0.6) g/l by gravimetric determination on the 5th day of cultivation. The concentration of produced PHB ranges from 48 to 6 % of CDW, which was determined by gas chromatography. Nevertheless, the strain DSM 720 showed the best gelation properties and was used in the second part of this thesis for further optimization of the cultivation process, and for the analysis the formation of gelation procedure under different temperatures, gelation time and concentrations of crosslinking solution. The formed gels were compared by rheological measurements of amplitude and frequency tests.
Preparation and characterization of hydrogel delivery systems from poly-gamma-glutamic acid
Mai, Thuy Ha ; Smilek, Jiří (referee) ; Sedláček, Petr (advisor)
The presented diploma thesis focuses on the development and preparation of model poly--glutamic acid based hydrogel carrier systems. For the hydrogel carrier preparation, methods based on physical interactions between polyelectrolyte and oppositely charged multivalent ion or oppositely charged macromolecule were proposed. Based on the pilot experiments, trivalent iron cation and chitosan were selected as suitable crosslinking agents. By crosslinking -PGA via ferric cations a successful bead formation has been accomplished and attempts have been made for a preparation of beads smaller than 1 000 m by employing microencapsulation techniques. Rapid disintegration of -PGA beads occurred upon immersion of the beads in water making these systems unsuitable for drug carrier applications. Interactions between -PGA and chitosan lead to polyelectrolyte complexes formation and by optimizing concentrations and pH of polyelectrolyte solutions, a formation of homogenous looking hydrogel with high water content (>0,9) has been achieved.
Self-encapsulation of Plant Growth Promoting Rhizobacteria as a way towards new generation of bioinoculants
Gašparová, Dominika ; Obruča, Stanislav (referee) ; Sedláček, Petr (advisor)
This bachelor thesis focuses on Plant Growth-Promoting Rhizobacteria that can be used as a suitable ecological alternative to conventional fertilizers. However, most of today's approaches to incorporating PGPR into the process of soil fertilization are convoluted and costly. Crosslinking of alginate self-produced by PGPR offers a new possibility of plantgrowth- promoting bacteria encapsulation. The aim of this thesis consists of preparing gel matrices with incorporated bacteria, followed by testing the bacteria's viability and quantity. Firstly, experiments were carried out to determine various properties of gels produced by the chosen representative bacteria Azotobacter vinelandii. These properties include the molecular weight of alginate (with the highest molecular weight of strain CCM 289 (329,78± 6,8) kDa), the alginate's amount in the gel, the content of PHB (34%-44% CDW), and the gel's overall rheological properties. The complex modulus (as a representation of rheological properties) of the firmest gel reached the value of 13,34 kPa. The bacteria content was examined by flow cytometry, the CFU method, and spectrophotometry. The viability of bacteria was determined by analyzing the fluorescence intensity via fluorescent dyes (propidium iodide, fluorescein diacetate, rhodamine 123, calcein AM), then by using the CFU method, and also via the plate method. Furthermore, the effects of various factors such as different pH levels (pH 3, 7, and 10) or adding the specific alginatedegrading enzyme alginase were also examined. Releasing of the bacteria was observed over the course of seven days using flow cytometry and the CFU method. The plate method proved the bacteria's survival after gelation and without any source of carbon. The largest disintegration of gels occurred in acidic pH. Moreover, the effect of alginase on crosslinked bacterial gels and synthetic alginate were very similar. The survival of bacterial cultures in gel and their continuous release are significant findings in the development of novel bioinoculants based on this new concept.
The stress and modal analysis in parametric adaptive CAD programs
Sedláček, Petr ; Ondrůšek, Čestmír (referee) ; Kuchyňková, Hana (advisor)
This thesis is focusing on the use of the finite element method (FEM) in program environment of Autodesk Inventor Professional (AIP) 2010. For the analysis of the components or assemblies with FEM serves the Strength analysis module of the AIP 2010, whose environment and functions are detailed in this thesis. At the conclusion practical examples of modal and static analysis on the synchronous generator rotor model are demonstrated including a brief evaluation of the results.
Biotechnological production of sophorolipids
Šimšová, Veronika ; Sedláček, Petr (referee) ; Obruča, Stanislav (advisor)
This diploma thesis deals with the microbial production of sophorolipids by the Starmerella genus yeasts. The theoretical part of the thesis includes general characteristics of biosurfactants with the focus on sophorolipids. There are described the options of biotechnological production of sophorolipids and fields of their possible applications. Furthermore, the theoretical part deals with the describtion of Starmerella bombicola yeast, which is often used for biotechnological production of sophorolipids. Six strains of the Starmerella genus were cultured in the basic medium suitable for sophorolipid produsction. The amount of produced sophorolipids was tested by the emulsification capacity assay, solubilization of crystalline anthracene assay, measuring the surface tension by the Du-Noüy-Ring method and determination of the sophorolipid concentration by extraction with ethyl acetate. The purity of the extracted sophorolipids was inspected by the Fourier Transform infrared spectrosopy (FT-IR) Based on the results, the Starmerella bombicola CBS 6009 and the Starmerella anomalae CBS 14178 strains were studied in greater detail. They were cultured in several production media of different composition and the effect of the individual components on the ability of the sophorolipid production was monitored. Based on the results, it was evaluated that the composition of the medium has a great influence on the production ability of the strains. The highest production rate of sophorolipids was achieved in the basic production medium and so was in the medium containing molasses and Indian waste oil. The cultivation mode has great effect on the sophotolipid production rate. It has been found that when cultured in a bioreactor, the strains produced sophorolipids in a larger amount and of a different quality than in the shaker flasks.
Microrheology in systems of polymeric colloids
Bjalončíková, Petra ; Sedláček, Petr (referee) ; Venerová, Tereza (advisor)
My bachelor’s thesis was aimed to deal with evaluation of microrheology method in the research of polymer colloids. Used polymers were poly(sodium 4-styrenesulfonate) and sodium carboxymethyl celullose. For measuring of microrheology were used particles with different radius (1 m and 4 m). The results obtained with passive microrheology were compared with results obtained with clasical rheology. It was found, that both substances have viscous charakter. The values of polymer viscosity were similar for dilute solutions in both methods, but for concentrated solutions deviations were found. The reason are polymer nets, which do not allow sufficient movement of particles in concentrated solutions.

National Repository of Grey Literature : 341 records found   beginprevious119 - 128nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.