Název:
On fluid structure interaction problems of the heated cylinder approximated by the finite element method
Autoři:
Vacek, Karel ; Sváček, P. Typ dokumentu: Příspěvky z konference Konference/Akce: Programs and Algorithms of Numerical Mathematics /22./, Hejnice (CZ), 20240623
Rok:
2025
Jazyk:
eng
Abstrakt: This study addresses the problem of the flow around circular cylinders with mixed convection. The focus is on suppressing the vortex-induced vibration (VIV) of the cylinder through heating. The problem is mathematically described using the arbitrary Lagrangian-Eulerian (ALE) method and Boussinesq approximation for simulating fluid flow and heat transfer. The fluid flow is modeled via incompressible Navier-Stokes equations in the ALE formulation with source term, which represent the density variation due to the change of temperature. The temperature is driven by the additional governing transport equation. The equations are numerically discretized by the finite element method (FEM), where for the velocity-pressure couple the Taylor-Hood (TH) finite element is used and the temperature is approximated by the quadratic elements. The proposed solver is tested on benchmark problems.
Klíčová slova:
arbitrary Lagrangian-Eulerian method; finite element method; heated cylinder; Taylor-Hood element Číslo projektu: GA22-01591S (CEP) Poskytovatel projektu: GA ČR Zdrojový dokument: Programs and Algorithms of Numerical Mathematics 22 : Proceedings of Seminar, ISBN 978-80-85823-74-5 Poznámka: Související webová stránka: http://dx.doi.org/10.21136/panm.2024.15
Instituce: Matematický ústav AV ČR
(web)
Informace o dostupnosti dokumentu:
Dokument je dostupný v repozitáři Akademie věd. Původní záznam: https://hdl.handle.net/11104/0368025