Název:
Detekce defektů desek ve výrobě polovodičů
Překlad názvu:
Classification of board defects in semiconductor manufacturing
Autoři:
Jašek, Filip ; Vágner, Martin (oponent) ; Dřínovský, Jiří (vedoucí práce) Typ dokumentu: Diplomové práce
Rok:
2023
Jazyk:
cze
Nakladatel: Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií
Abstrakt: [cze][eng]
Tato diplomová práce se zabývá problematikou detekce defektů desek ve výrobě polovodičů. V rámci této práce byly zkoumány metody identifikace defektních čipů a kontroly řízení výtěžnosti při výrobě polovodičů. Práce se rovněž zabývá metodami strojového učení pro rozpoznání obrazu s cílem klasifikace defektů ve výrobním procesu. První zvolený přístup využíval k inferenci sítě ResNet18, avšak ukázalo se, že jeho přesnost nedosahovala vysokých hodnot sledovaných metrik z důvodu nedostatečného množství vstupních dat. Pro tento sledovaný dataset tak bylo vyzkoušeno použití předtrénovaných sítí využívající topologie ResNet50v2. K navýšení metrik však došlo až s použitím jiného datasetu. Pomocí ladění hyperparametrů sítě a augmentací byly zkoumány další možnosti zlepšení výkonnosti sítě. V práci se také ukázalo, že použití autoenkodérů pro redukci datového toku při inferenci může navýšit rychlost samotné inference, avšak s degradací evaluačních metrik.
This diploma thesis focuses on detecting defects in semiconductor wafer manufacturing. It explores methods for identifying faulty chips and controlling yield during production. To classify defects machine learning techniques are used. Initially, ResNet18 architecture was used for inference, but low accuracy was attributed to limited input data. Transfer learning with ResNet50v2 was then attempted, resulting in improved metric with different dataset. Hyperparameter tuning and data augmentations were also explored. The study found that autoencoders for data compression during inference increased speed but led to degraded evaluation metrics.
Klíčová slova:
detekce defektů; identifikace chybných čipů; inference; klasifikace defektů; počítačové vidění; předtrénované sítě; redukce toku dat; strojové učení; sítě ResNet; Umělá inteligence; výtěžnost výroby; Artificial intelligence; computer vision; data flow reduction; defect classification; defect detection; faulty chip identification; inference; machine learning; ResNet networks; transfer learning; yield control
Instituce: Vysoké učení technické v Brně
(web)
Informace o dostupnosti dokumentu:
Plný text je dostupný v Digitální knihovně VUT. Původní záznam: http://hdl.handle.net/11012/213792