Original title:
Detekce defektů desek ve výrobě polovodičů
Translated title:
Classification of board defects in semiconductor manufacturing
Authors:
Jašek, Filip ; Vágner, Martin (referee) ; Dřínovský, Jiří (advisor) Document type: Master’s theses
Year:
2023
Language:
cze Publisher:
Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií Abstract:
[cze][eng]
Tato diplomová práce se zabývá problematikou detekce defektů desek ve výrobě polovodičů. V rámci této práce byly zkoumány metody identifikace defektních čipů a kontroly řízení výtěžnosti při výrobě polovodičů. Práce se rovněž zabývá metodami strojového učení pro rozpoznání obrazu s cílem klasifikace defektů ve výrobním procesu. První zvolený přístup využíval k inferenci sítě ResNet18, avšak ukázalo se, že jeho přesnost nedosahovala vysokých hodnot sledovaných metrik z důvodu nedostatečného množství vstupních dat. Pro tento sledovaný dataset tak bylo vyzkoušeno použití předtrénovaných sítí využívající topologie ResNet50v2. K navýšení metrik však došlo až s použitím jiného datasetu. Pomocí ladění hyperparametrů sítě a augmentací byly zkoumány další možnosti zlepšení výkonnosti sítě. V práci se také ukázalo, že použití autoenkodérů pro redukci datového toku při inferenci může navýšit rychlost samotné inference, avšak s degradací evaluačních metrik.
This diploma thesis focuses on detecting defects in semiconductor wafer manufacturing. It explores methods for identifying faulty chips and controlling yield during production. To classify defects machine learning techniques are used. Initially, ResNet18 architecture was used for inference, but low accuracy was attributed to limited input data. Transfer learning with ResNet50v2 was then attempted, resulting in improved metric with different dataset. Hyperparameter tuning and data augmentations were also explored. The study found that autoencoders for data compression during inference increased speed but led to degraded evaluation metrics.
Keywords:
Artificial intelligence; computer vision; data flow reduction; defect classification; defect detection; faulty chip identification; inference; machine learning; ResNet networks; transfer learning; yield control; detekce defektů; identifikace chybných čipů; inference; klasifikace defektů; počítačové vidění; předtrénované sítě; redukce toku dat; strojové učení; sítě ResNet; Umělá inteligence; výtěžnost výroby
Institution: Brno University of Technology
(web)
Document availability information: Fulltext is available in the Brno University of Technology Digital Library. Original record: http://hdl.handle.net/11012/213792