Název:
Klasifikační metody analýzy vrstvy nervových vláken na sítnici
Překlad názvu:
A Classification Methods for Retinal Nerve Fibre Layer Analysis
Autoři:
Zapletal, Petr ; Kolář, Radim (oponent) ; Odstrčilík, Jan (vedoucí práce) Typ dokumentu: Diplomové práce
Rok:
2010
Jazyk:
cze
Nakladatel: Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií
Abstrakt: [cze][eng]
Tato práce se zabývá klasifikací vrstvy nervových vláken na sínici. Pro klasifikaci jsou použita data získaná šesti různými metodami texturní analýzy. Každá metoda vypočítá ze vstupních obrazů vektor příznaků, který je pro danou skupinu charakteristický. Vlastní třídění je realizováno třemi algoritmy učení s učitelem a jedním algoritmem učení bez učitele. Jako první je otestován algoritmus Ho-Kashyap. Poté Bayessovský klasifikátor NDDF (Normal Density Discriminant Function) a pro třetí klasifikátor je použita metoda nejbližších sousedů (Nearest Neighbors) k-NN. Jako poslední je zde odzkoušen klasifikátor K-means, který pracuje na principu shlukové analýzy. Pro větší kompaktnost jsou použity tři metody výběru testovacích dat pro algoritmy učení s učitelem. Jsou to „Repeated random subsampling cross validation“, „K-fold cross validation“ a „Leave one out cross validation“. Všechny použité třídící algoritmy jsou nakonec porovnány podle výsledné chyby klasifikace.
This thesis is deal with classification for retinal nerve fibre layer. Texture features from six texture analysis methods are used for classification. All methods calculate feature vector from inputs images. This feature vector is characterized for every cluster (class). Classification is realized by three supervised learning algorithms and one unsupervised learning algorithm. The first testing algorithm is called Ho-Kashyap. The next is Bayess classifier NDDF (Normal Density Discriminant Function). The third is the Nearest Neighbor algorithm k-NN and the last tested classifier is algorithm K-means, which belongs to clustering. For better compactness of this thesis, three methods for selection of training patterns in supervised learning algorithms are implemented. The methods are based on Repeated Random Subsampling Cross Validation, K-Fold Cross Validation and Leave One Out Cross Validation algorithms. All algorithms are quantitatively compared in the sense of classication error evaluation.
Klíčová slova:
algoritmus; cross validation; Ho-Kashyap; K-means; klasifikátor; NDDF; nejbližší soused; sítnice; třídění; algorithm; classification; classificator; cross validation; Ho-Kashyap; K-means; NDDF; Nearest Neighbor; retina
Instituce: Vysoké učení technické v Brně
(web)
Informace o dostupnosti dokumentu:
Plný text je dostupný v Digitální knihovně VUT. Původní záznam: http://hdl.handle.net/11012/18175