Národní úložiště šedé literatury Nalezeno 8 záznamů.  Hledání trvalo 0.01 vteřin. 
Výstavba a programování clusteru o nízkém příkonu
Hradecký, Michal ; Nikl, Vojtěch (oponent) ; Jaroš, Jiří (vedoucí práce)
Projekt se zabývá výstavbou a programováním nízko-příkonového clusteru složeného z kitů Hardkernel Odroid XU4 založených na čipech ARM Cortex A15 a Cortex A7. Cílem bylo navrhnout jednoduchý cluster složený z několika kitů a vytvořit pro něj sadu testů, na nichž by šlo otestovat základní výkonnostní parametry a spotřebu. K testování byly použity zejména benchmarky HPL, Stream a různé testy pro rozhraní MPI. Celkový výkon clusteru složeného ze 4 kitů měřený v benchmarku HPL byl 23~GFLOP/s ve dvojité přesnosti, přičemž cluster vykazoval efektivitu výpočtu cca 0,58~GFLOP/W. Práce dále popisuje instalaci plánovače PBS Torque a frameworku pro kompilaci a správu HPC softwaru EasyBuild na 32bitové platformě ARM. Po srovnání se superpočítačem Anselm vyšlo, že Odroid cluster poskytuje přibližně stejnou efektivitu výpočtu jako velký superpočítač, ovšem za vyšší pořizovací cenu za srovnatelný výkon.
Principy a aplikace neuroevoluce
Herec, Jan ; Strnadel, Josef (oponent) ; Bidlo, Michal (vedoucí práce)
Práce se na teoretické úrovni zabývá evolučními algoritmy (EA), neuronovými sítěmi (NN) a jejich syntézou v podobě neuroevoluce. Z praktického hlediska je cílem práce ukázat uplatnění neuroevoluce na dvou odlišných úlohách. První úloha spočívá v evolučním návrhu architektury konvoluční neuronové sítě (CNN), která by dokázala klasifikovat s vysokou přesností ručně psané číslice (z datasetu MNIST). Druhá úloha spočívá v evoluční optimalizaci vah neurokontroléru, který řídí přistání 1. stupně rakety Falcon 9 ve 2D simulaci. Obě úlohy jsou výpočetně velmi náročné a proto byly řešeny na superpočítači. V rámci první úlohy se podařilo navrhnout takové architektury, které při správném natrénování dosahují přesnosti klasifikace 99,49%. Ukázalo se tak, že je možné návrh kvalitních architektur zautomatizovat s využitím neuroevoluce. V rámci druhé úlohy se podařilo optimalizovat váhy neurokontroléru tak, že pro definované počáteční podmínky dovede neurokontrolér model rakety k úspěšnému přistání. V obou úlohách tedy neuroevoluce uspěla.
Detekce zájmových bodů na CUDA
Ryba, Jan ; Řezníček, Ivo (oponent) ; Herout, Adam (vedoucí práce)
Detekce rohových bodů je jednou z mnoha činností, v rámci počítačového vidění, použitelných pro určování pohybu, sledování objektů, porovnávání obrazů, atd. Většina algoritmů je však komplexních a výpočetně náročných. Zde vstupuje platforma CUDA. Funkce běžící paralelně na grafických akcelerátorech mohou výrazně snížit čas nutný pro výpočet. Takto je umožněno detekovat rohové body v real-time nebo rychleji. Práce se zabývá algoritmy Moravec a Harris a jejich efektivní implementací na CUDA. Důležitý je i průzkum možností a výkonu platformy CUDA.
Large-scale Ultrasound Simulations using Accelerated Clusters
Vaverka, Filip ; Boehm, Christian (oponent) ; Říha, Lubomír (oponent) ; Jaroš, Jiří (vedoucí práce)
Efficient utilization of accelerated HPC clusters is particularly sensitive to communication efficiency of deployed algorithms. In this thesis, we reexamine pseudo-spectral solvers for wave-like problems in medical ultrasonics to allow their deployment on these machines. The domain decomposition is shown to be a preferable approach to improving data locality of these solvers as a range  of suitable alternative discretizations exhibited considerably worse numerical properties. The local Fourier basis domain decomposition is then used to construct a novel solver based on the state of the art model for ultrasound in medicine -- k-Wave. We show that this approach is up to 7.5x faster and achieves almost perfect weak-scaling up to 512 GPU accelerated nodes, while being able to take full advantage of advanced GPU interconnects such as NVLink in NVIDIA DGX-2 multi-GPU nodes. The method offers flexible accuracy--efficiency trade off, which allows to nearly match accuracy of the global k-Space method or maximize performance at sufficient accuracy by subdomain overlap scaling.
Principy a aplikace neuroevoluce
Herec, Jan ; Strnadel, Josef (oponent) ; Bidlo, Michal (vedoucí práce)
Práce se na teoretické úrovni zabývá evolučními algoritmy (EA), neuronovými sítěmi (NN) a jejich syntézou v podobě neuroevoluce. Z praktického hlediska je cílem práce ukázat uplatnění neuroevoluce na dvou odlišných úlohách. První úloha spočívá v evolučním návrhu architektury konvoluční neuronové sítě (CNN), která by dokázala klasifikovat s vysokou přesností ručně psané číslice (z datasetu MNIST). Druhá úloha spočívá v evoluční optimalizaci vah neurokontroléru, který řídí přistání 1. stupně rakety Falcon 9 ve 2D simulaci. Obě úlohy jsou výpočetně velmi náročné a proto byly řešeny na superpočítači. V rámci první úlohy se podařilo navrhnout takové architektury, které při správném natrénování dosahují přesnosti klasifikace 99,49%. Ukázalo se tak, že je možné návrh kvalitních architektur zautomatizovat s využitím neuroevoluce. V rámci druhé úlohy se podařilo optimalizovat váhy neurokontroléru tak, že pro definované počáteční podmínky dovede neurokontrolér model rakety k úspěšnému přistání. V obou úlohách tedy neuroevoluce uspěla.
Výstavba a programování clusteru o nízkém příkonu
Hradecký, Michal ; Nikl, Vojtěch (oponent) ; Jaroš, Jiří (vedoucí práce)
Projekt se zabývá výstavbou a programováním nízko-příkonového clusteru složeného z kitů Hardkernel Odroid XU4 založených na čipech ARM Cortex A15 a Cortex A7. Cílem bylo navrhnout jednoduchý cluster složený z několika kitů a vytvořit pro něj sadu testů, na nichž by šlo otestovat základní výkonnostní parametry a spotřebu. K testování byly použity zejména benchmarky HPL, Stream a různé testy pro rozhraní MPI. Celkový výkon clusteru složeného ze 4 kitů měřený v benchmarku HPL byl 23~GFLOP/s ve dvojité přesnosti, přičemž cluster vykazoval efektivitu výpočtu cca 0,58~GFLOP/W. Práce dále popisuje instalaci plánovače PBS Torque a frameworku pro kompilaci a správu HPC softwaru EasyBuild na 32bitové platformě ARM. Po srovnání se superpočítačem Anselm vyšlo, že Odroid cluster poskytuje přibližně stejnou efektivitu výpočtu jako velký superpočítač, ovšem za vyšší pořizovací cenu za srovnatelný výkon.
Detekce zájmových bodů na CUDA
Ryba, Jan ; Řezníček, Ivo (oponent) ; Herout, Adam (vedoucí práce)
Detekce rohových bodů je jednou z mnoha činností, v rámci počítačového vidění, použitelných pro určování pohybu, sledování objektů, porovnávání obrazů, atd. Většina algoritmů je však komplexních a výpočetně náročných. Zde vstupuje platforma CUDA. Funkce běžící paralelně na grafických akcelerátorech mohou výrazně snížit čas nutný pro výpočet. Takto je umožněno detekovat rohové body v real-time nebo rychleji. Práce se zabývá algoritmy Moravec a Harris a jejich efektivní implementací na CUDA. Důležitý je i průzkum možností a výkonu platformy CUDA.
Generování komplexních procedurálních terénů na GPU
Ryba, Jan ; Bartoň, Radek (oponent) ; Herout, Adam (vedoucí práce)
Generování komplexních plně prostorových terénů je velmi náročnou činností, buďto datově nebo výpočetní, případně obojí. Datovou náročnost můžeme značně omezit, nebo plně eliminovat použitím procedurálního přístupu, kdy však vyvstává problém výpočetní náročnosti. Zde vstupuje platforma CUDA. Výpočty prováděné paralelně na grafických akcelerátorech mohou výrazně snížit čas nutný pro výpočet. Takto můžeme dosáhnout generování velmi komplexních terénů v reálném čase. Jelikož je metoda plně prostorová, dává nám to možnost navázat generování na jakákoliv volumetrická data. Pro využití v herním, či filmovém průmyslu.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.