National Repository of Grey Literature 15 records found  1 - 10next  jump to record: Search took 0.01 seconds. 
Determination of Roughness Factor and Fractal Dimension of Zirconium in its Native and Surface Modified State using Atomic Force Microscopy. Effect of the Hydrogen\nEvolution Reaction on the Surface Structure
Novák, M. ; Kocábová, Jana ; Kolivoška, Viliam ; Pospíšil, Lubomír ; Macák, J. ; Cichoň, Stanislav ; Cháb, Vladimír ; Hromadová, Magdaléna
Atomic force microscopy (AFM) was used to characterize surface morphology of pristine zirconium, Si modified and FeSi modified zirconium electrodes prior and after hydrogen evolution at potentials negative of the open circuit potential value. Two main characteristic parameters were obtained from the ex situ AFM height images, namely, the roughness factor and fractal dimension of the studied surface. The effect of hydrogen evolution reaction on the electrode surface morphology was discussed. Fractal dimension values were used successfully to explain the non ideality of the interfacial capacitance.
Investigation of Single Molecule Charge Transport Properties and Geometrical Arrangement in Terpyridine Architectures Supported by the Tetraphenylmethane Tripod
Kolivoška, Viliam ; Sebechlebská, Táňa ; Šebera, Jakub ; Gasior, Jindřich ; Lindner, M. ; Lukášek, J. ; Valášek, M. ; Mayor, M. ; Mészáros, G. ; Hromadová, Magdaléna
Tripodal platforms were engineered recently to realize a well-defined directional contact between metallic electrodes and molecular architectures dedicated to serve as working elements for electronic applications. In this work we employ cyclic voltammetry, scanning tunneling microscopy break junction technique and theoretical approaches based on the combination of density functional theory and non-equilibrium Green´s function to investigate the geometrical arrangement and single molecule charge transport in terpyridine-based architectures supported by tetraphenylmethane tripod. We demonstrate that this architecture adopts a favorable geometrical arrangement capable of forming highly conductive molecular junctions and is thus suitable to serve as a basis for working molecular switches.
Preparation, characterization and study of electron transfer in self-organized structures on solid electrodes
Kolivoška, Viliam
The presented thesis focuses on electrochemical, spectroelectrochemical, adsorption, complexation and conductivity properties of extended viologens of variable length (the compounds 1 to 6). In the future, their molecules could serve as conducting molecular wires in the devices of molecular electronics. At the mercury/electrolyte interface, all studied compounds were found to form a compact monolayer with flat-lying molecules with the diffusion as the rate-determining step. The presence of adsorbed molecules on Au(111) surface was confirmed by STM and PM IRRAS techniques. The extended viologen molecule consisting of one repeating unit (the compound 1) was found to reversibly transfer four electrons, behaving as a fully delocalized system. On the other hand, the molecule of the compound 2 transfers two electrons independently, having thus two non-communicating centers. The molecules containing higher number of repeating units (n) transfer 2(n-1) electrons in the first two closely-positioned reduction steps (with n-1 electrons being independently consumed in each of them). Chemical stability of reduced forms of the compounds 1 to 6 was confirmed by UV/VIS/NIR in-situ spectroelectrochemical techniques. Electric conductance of junctions containing extended viologen molecules (scrutinized by Tao's...
Effect of pH on the Oxide Film Formation on a Pristine Zr Electrode
Hromadová, Magdaléna ; Kocábová, Jana ; Kolivoška, Viliam ; Pospíšil, Lubomír
Effect of pH on the oxidation of zirconium metal was studied by cyclic voltammetry in\naqueous borate buffer solutions as a function of the potential scan rate and pH from 4.80 to\n9.17. The results show that the oxide growth kinetics depends on pH of the electrolyte\nsolution and the total amount of irreversibly formed oxide under the potentiodynamic\nconditions decreases with decreasing buffer pH in accord with thermodynamic considerations.\nCathodic current corresponding to hydrogen evolution reaction diminishes in the presence of\nanodically modified electrode compared to bare zirconium.
Charge Transport through Molecular Towers Based on Tetraphenylmethane Tripods
Kolivoška, Viliam ; Šebera, Jakub ; Lindner, M. ; Valášek, M. ; Mayor, M. ; Mészáros, G. ; Gasior, Jindřich ; Hromadová, Magdaléna
Molecular platforms with multiple anchors were introduced recently to provide robust\ncoupling between molecular electronic components and metallic electrodes. In this work,\ncharge transport in tower-shaped single molecule conductors based on tetraphenylmethane\ntripod possessing three thiol anchors is investigated by scanning tunneling microscopy break\njunction technique. The effect of tripod substitution pattern and number of repeating units in\nmolecule is addressed. The substitution was found to influence conductance value in early\nstages of molecular junction evolution, where tower lays parallel to surface. In late stages, the\ncharge is transported through principal molecular axis and junction breaks thermally in tilted\nconfiguration.
Supported Phospholipid Bilayer at the Conductive Interface
Sokolová, Romana ; Kocábová, Jana ; Kolivoška, Viliam ; Gál, M.
The interactions of ethanol and flavonoid compounds with supported phospholipid bilayer\nwere studied by means of electrochemical methods and scanning probe techniques. The\nstability of a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) phospholipid bilayer\nsupported on different types of conductive substrate was investigated. The relationship\nbetween the method of lipid deposition and the formation of several types of lipid structures\nincluding vesicles, hemimicelles, patches and single bilayers on the interface is discussed.
2-D simulations of electromigration processes
Kolivoška, Viliam ; Koval, Dušan (referee) ; Gaš, Bohuslav (advisor)
6 Abstract In the presented thesis we introduce a computational model that can be used for 2-D and 3-D computer simulations of experiments in electrophoresis. The simulations are carried out by the aid of the finite element method (FEM). In particular, commercially available program Comsol Multiphysics 3.3 is employed. A general shape of continuity equation is chosen to express the mass, electric charge, momentum and energy conservation law. Diffusion, migration and convection terms are taken into account when formulating the mass conservation law. Both external (driving voltage) and internal (diffusion currents) terms are considered in the electric charge conservation law. Both constant voltage mode and constant current mode can be handled. A solvent is regarded as an incompressible Newtonian fluid. Both pressure-driven and electroosmotic flows can be taken into consideration. The heat convection as well as the heat diffusion is governed by the energy conservation law. Both strong and weak electrolytes (of any attainable valency) may be regarded as system constituents. Furthermore, the model can handle the ionic strength correction if desired. A task may be assigned either in Cartesian or cylindrical coordinates. The presented model was employed to solve four particular tasks. The first one inspects the...
Dependence of Single-Molecule Conductance of Pyridinium Derivatives on Their Structure
Lachmanová, Štěpánka ; Hromadová, Magdaléna ; Kolivoška, Viliam ; Pospíšil, Lubomír ; Gasior, Jindřich ; Mészáros, G. ; Lainé, P. P.
The derivates of pyridinium belong to promising group of molecules applicable in molecular electronics. For this purpose, four expanded branched pyridinium compounds were synthetized and the influence of the molecular structure on their electrochemical properties and single-molecule conductances has been studied. The highest values of conductance provided compounds 9-(pyridin-4-yl)benzo[c]benzo[1,2]quinolizino[3,4,5,6-ija][1,6]naphthyridin-15-ium tetrafluoroborate and 3,5-dimethyl-2´,6´-diphenyl-[4,1´:4´,4´´-terpyridin]-1´-ium tetrafluoroborate. By the electrochemical reduction both of these compounds received two electrons in two separated one-electron steps. On the other hand, the compounds 2´,6´-diphenyl-[4,1´:4´,4´´-terpyridin]-1´-ium tetrafluoroborate and 2,6-diphenyl-4-(4-(pyridin-4-yl)phenyl)-[1,4´-bipyridin]-1-ium tetrafluoroborate are reduced by different mechanism and their conductance was lower.
Charge Transport in Single Molecule Junctions of Spirobifluorene Scaffold
Hromadová, Magdaléna ; Kolivoška, Viliam ; Sokolová, Romana ; Šebera, Jakub ; Mészáros, G. ; Valášek, M. ; Mayor, C.
Single molecule conductance of two spirobifluorene molecules of different length have been studied by scanning tunneling break junction (STM–BJ) methodology. First molecule contains a tripodal spirobifluorene platform, whereas a second one contains the same platform with chemically attached p-phenyleneethynylene molecular wire. The conductance values change only slightly between these two molecules, which demonstrated that such a platform provides both highly conducting pathway and stable anchor for the future molecular electronic devices.

National Repository of Grey Literature : 15 records found   1 - 10next  jump to record:
See also: similar author names
1 Kolivoška, V.
Interested in being notified about new results for this query?
Subscribe to the RSS feed.