Ústav fyziky materiálů

Nejnovější přírůstky:
2018-01-11
18:42
AB INITIO STUDY OF EFFECT OF SEGREGATED SP-IMPURITIES AT GRAIN BOUNDARIES IN NICKEL
Všianská, Monika ; Šob, Mojmír
The embrittling/strengthening effects of segregated sp-elements in the 3rd 4th and 5th period (Al, Si, P, S, Ga, Ge, As, Se, In, Sn, Sb and Te) at the Sigma 5(210) grain boundary (GB) in fcc nickel have been investigated using density functional theory. We predict Si as a GB cohesion enhancer, Al and P have none or minimal strengthening effect and S, Ga, As, Se, In, Sn, Sb and Te are GB embrittlers in Ni. We also analyze the segregation enthalpy of all impurities. It turns out that AI, Ga, In, Sn, Sb and Te are substitutional and Si, P, S, Ge, As and Se interstitial impurities at the GB in Ni.

Úplný záznam
2018-01-11
18:42
STRUCTURAL, THERMODYNAMICS AND PHYSICAL PROPERTIES OF Zn Sn Al ALLOYS
Drápala, J. ; Musiol, J. ; Petlák, D. ; Vodárek, V. ; Smetana, B. ; Zlá, S. ; Kostiuková, G. ; Kroupa, Aleš ; Sidorov, V.E.
Some results of thermodynamic, structural and physical properties of Al-Sn-Zn alloys are presented in our paper. The ternary Al-Sn-Zn alloys were prepared in a resistance furnace in evacuated ampoules. The alloys were studied metallographically, their micro-hardness and X-ray micro-analysis (EDX, SEM) of individual phases were measured. Temperatures of phase transitions (liquidus, solidus, invariant reactions, etc.) were obtained using the DTA method (Setaram SETSYS 18 (TM)). The long time annealing (250, 300, 350 degrees C; 3, 7, 14 or 28 days) was used in order to achieve the thermodynamic equilibrium. The results were confronted with thermodynamic modelling of the ternary Al Sn Zn system in the Institute of Physics of Materials AS of the Czech Republic in Brno. We have studied density (by gamma-absorption method), electrical resistivity (by contactless method in rotating magnetic field) and magnetic susceptibility (by Faraday's method) of some Al-Sn-Zn alloys containing up to 10 at.% of aluminum and up to 65 at.% of zinc. The increasing of zinc content resulted in the decrease of the density and susceptibility values, except for one sample. The resistivity values practically didn't depend on the zinc content in the crystalline state, whereas a maximum was found for one of the samples in the liquid state. This work has been made in the frame of COST Action MP0602 project "Advanced Solder Materials for High-Temperature Application".

Úplný záznam
2017-11-08
17:03
Characterization of Mo-B-C nanostructured coating microstructure by means of AEM and GDOES
Buršík, Jiří ; Svoboda, Milan ; Švábenská, Eva ; Buršíková, V. ; Souček, P. ; Zábranský, L. ; Vašina, P.
A Mo-B-C nanostructured coating was prepared on WC-Co hard-metal substrate by magnetron sputtering. The details of microstructure of deposited thin layer as well as elements redistribution caused by subsequent annealing at 1000°C were studied by several experimental techniquec.

Úplný záznam
2017-10-30
13:45
Nanoscale phases on surface Fe-6Si magnetic sheets
Švábenská, Eva ; Roupcová, Pavla ; Král, Lubomír ; Bulín, Tomáš ; Vondráček, Martin ; Foldyna, Josef ; Čechal, J. ; Schneeweiss, Oldřich
Analysis of the nanoscale phases which appear on the surface Fe-6Si samples were carried out after the various treatments – grinding and etching, annealing, and water jet abrasion. The basic information on structure, chemical and phase composition was obtained by X-Ray Powder Diffraction (XRD), Scanning Electron Microscopy with EDX, Glow Discharge Optical Emission Spectrometry (GDOES), Mössbauer Spectroscopy and X-ray Photoelectron Spectrometry (XPS). The results show high stability of the surface phase composition after the mechanical and heat treatments. Results obtained from the surface analysis in micrometer depth (XRD, EDX, GDOES) do not show any changes after the different treatments. Iron oxides were detected in XPS and conversion electron Mössbauer spectra (CEMS) which analyze the surface composition in a nanometer scale. In addition to, fine changes in atomic ordering on the surface can be observed after mechanical and heat treatments in the CEMS spectra.

Úplný záznam
2017-10-30
13:45
HYDROGENATION OF CHOSEN MgMXN INTERMETALLICS (X=Al, Ga, In, Si, Sn)
Čermák, Jiří ; Král, Lubomír ; Roupcová, Pavla
Hydrogen sorption in chosen intermetallics MgmXn (Mg17Al12 , Mg2Ga, mixture of beta-Mg-In phases, Mg2Si and Mg2Sn) formed by magnesium and elements from the 13 th (X: Al, Ga, In) and 14 th (X: Si, Sn) groups was studied between the room temperature and T = 350 °C. Hydrogen pressure p varied from 10-3 MPa to 6 MPa.\nHydrogen solubility in alpha phase (solid solution of hydrogen in MgmXn before the hydride phase was nucleated) was close to hydrogen solubility in pure Mg. Concentration cH of hydrogen solved in Mg m X n depended linearly on pressure p ; dependence of cH on temperature T was relatively weak. MgH2 was the main hydrogen storage phase in all the compounds MgmXn . Nucleation of MgH2 at 350 °C was observed at pressure above approximately 1 MPa in Mg17Al12 and above 2 Ma in other compounds. Maximum values of c H in hydride-containing compounds MgmXn detected at T = 350 °C depended on the stability of MgmXn .

Úplný záznam
2017-10-30
13:45
HYDROGENATION PROPERTIES OF Mg-Al-Ti-Zr-C COMPOSITE
Král, Lubomír ; Čermák, Jiří ; Roupcová, Pavla
The improvement of hydrogen storage properties of ball-milled Mg-Al-Ti-Zr-C composite was studied in this\npaper. It has been previously shown, that the addition of Ti, Zr, Al and C improves storage properties of Mg.\nThis beneficial effect of additives upon hydrogen storage properties can be explained by catalysis by the\nnanoparticles rich in Ti, Zr or Al located on the surface of Mg grains. They provide effective pathways for the\nhydrogen diffusion into the MgH2. The morphological and microstructural characteristics were investigated by\nscanning electron microscope Tescan Lyra 3 and by X-ray diffraction. The hydrogen sorption was measured\nby Sieverts method using Setaram PCT-Pro device.\nStudied experimental composite absorbed 4.2 wt.% H 2 at 573 K and 3 wt.% H 2 at 523K within 10 min. The\nhydrogen storage capacity of the composite was about 4.6% wt.% H 2 and 4.2% wt.% H 2 at 573K and 523K,\nrespectively.

Úplný záznam
2017-04-28
14:22
Magnetic properties of 42CrMo4 steel
Bulín, T. ; Švábenská, Eva ; Hapla, Miroslav ; Roupcová, Pavla ; Ondrušek, C. ; Schneeweiss, Oldřich
Low alloyed high-grade chrome-molybdenum ferritic steel was investigated from the point of views of magnetic properties in dependence on heat and mechanical treatment. This steel can be used as components of magnetic circuits or some parts in electrical equipment. The basic information on structure and phase composition was obtained by optical and scanning electron microscopy, X-ray Powder Diffraction and Mössbauer Spectroscopy. The temperature stability of the material was proved by measurements of temperature dependences of magnetic moment. The magnetic parameters were obtained by measuring of magnetic hysteresis loops in dependence on saturation field and their frequencies. The results are discussed from the point of view of possible applications as a magnetic material in the very extremely environment, where high mechanical stresses and elevated temperatures can occur.

Úplný záznam
2017-03-17
18:38
ATOMISTIC SIMULATIONS OF TWIN BOUNDARIES FACETING IN HCP MATERIALS
Ostapovets, Andriy
Deformation twinning is frequently observed in materials with hexagonal crystal lattice. It plays important role in plastic deformation of such materials. Twin regions have often lamellar shape and twin boundaries are usually oriented along invariant planes. However, non-invariant plane twin interfaces are also observed. Occurrence of such interfaces can be connected with interactions between twinning disconnections. Mechanisms of such interactions are discussed on the basis of atomistic simulations.

Úplný záznam
2017-03-17
18:38
THE EFFECTS OF HIGH TEMPERATURE HELIUM GAS ON THE FRACTURE BEHAVIOUR OF ODS MA957
Rozumová, L. ; Hojná, A. ; Kalivodová, J. ; Bublíková, P. ; Hadraba, Hynek ; Di Gabriele, F.
Oxide-dispersion-strengthened steel (ODS) MA957 has been studied as a candidate material for Tritium Breeding Blanket for fusion reactors with helium coolant, where temperatures 250-650 degrees C are expected. Helium is one of type as primary coolant in High Temperature Reactor and Gas Cooled Fast Reactor with working temperature 500-1000 degrees C. \n\nThis work presents results of the study of behaviour of ODS (MA957) under influence of high temperature helium environment. Microstructure of the material and the interaction with He was investigated. The average exposure temperature was held at 720 degrees C. Subsequently, the surface changes were determined. Impact testing and material surfaces were studied in detail by means of SEM and TEM microscopy. It is essential to understand the He effect on microstructure and mechanical properties of structural materials since the He embrittlement in TBB may be significant.

Úplný záznam
2017-03-17
18:38
The effect of σ-phase formation on long-term durability of SUPER 304H steel
Horváth, J. ; Král, Petr ; Janovec, J. ; Sklenička, Václav
This work presents results of the analysis of phases formed in a SUPER 304H steel during a medium-term static isothermal ageing (675 degrees C/15000 h). The investigations of the precipitates were especially focused on the occurrence of sigma-phase because its formation leads to the serious embrittlement. \nThe evaluation and distribution of brittle sigma-phase were determined on macroscopic level by using light microscopy/colour etching. The microstructure was also investigated on microscopic level by scanning electron microscopes Tescan Lyra 3 and JEOL JSM 5410 equipped by electron backscatter diffraction unit and by transmission electron microscope Jeol 2100F. This work also investigates the effect of sigma-phase formation on the impact strength of an aged state of SUPER 304H steel. For comparison reasons the microstructure and the mechanical properties of the initial as-received) state were also investigated. It was found that the formation of brittle sigma-phase in the aged and therefore degraded microstructure led to the significant decrease of the impact strength. The influence of brittle sigma-phase on long-term durability of the degraded steel regarding its insufficient impact strength is discussed.

Úplný záznam