Institute of Physics of Materials

Latest additions:
2024-04-15
12:40
PROPERTIES OF NANOCRYSTALLINE FE-NI PARTICLES PREPARED BY THERMAL REDUCTION OF OXALATE PRECURSORS
Švábenská, Eva ; Roupcová, Pavla ; Havlíček, Lubomír ; Schneeweiss, Oldřich
Recent technological advancements require development of cost-effective and high-performance magnets \nwhich ideally do not contain rare earth metals or noble metals. The promising candidates are Fe-Ni-based \nalloys, in particular, the Fe50Ni50 L10 phase (tetrataenite), which has a great perspective for producing hard \nmagnetic materials. Our study explores a promising method for preparing nanoparticles of Fe-Ni alloy from an \niron-nickel oxalate precursor. The coprecipitation method was employed to prepare oxalate precursors, \nfollowed by controlled thermal decomposition in a reducing hydrogen atmosphere. The morphology and \nproperties of the resulting particles were analysed using scanning electron microscopy (SEM) coupled with \nenergy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Mössbauer spectroscopy (MS), and \nmagnetic measurements.\nThe SEM analysis revealed that the particles have approximately cube-shaped unit cell morphology with a\nsize in a range of 1 - 2 μm. Upon annealing, the samples contain multiple phases with varying Fe-Ni content.\nMagnetic measurements confirmed the formation of magnetically suitable Fe-Ni phases in the samples after \nannealing. Mössbauer spectroscopy emerged as a highly effective method for characterizing individual phases \nof the Fe-Ni system.

Detailed record
2024-04-15
12:32
Stanovení vlivu geometrie vzorku na rozvoj creepové deformace pomocí metody akustické emise
Dvořák, Jiří ; Sklenička, Václav ; Král, Petr ; Kvapilová, Marie ; Svobodová, M. ; Šifner, J. ; Koula, V.
Tato práce se zabývá stanovením vlivu geometrie tělesa na vývoj porušení v průběhu creepové expozice. Creepové testy byly provedeny při teplotě 600 °C a napětí 180 MPa v režimu ochranné atmosféry argonu. Pro zkušební testy byl zvoleny vzorky z oceli P92 s konvekčním hladkým povrchem a vzorky opatřené V-vrubem. Výsledky creepové odolnosti a lomového chování byly doplněny podrobnou mikrostrukturní charakterizací k posouzení iniciace a vývoje creepového poškození. Na základě naměřených výsledků byla creepová data vyhodnocena pomocí neuronových sítí, které systematicky vyhledávají a zpracovávají signál z akustické emise (AE). Akustická emise byla použita jako účinná nedestruktivní metoda pro včasnou predikci počátku možné havárie komponent energetických a chemických zařízení.

Detailed record
2024-04-15
12:32
Creepové zkoušky zirkoniových povlakových tyčí jaderného paliva a jejich interpretace
Sklenička, Václav ; Kuchařová, Květa ; Kloc, Luboš ; Dvořák, Jiří ; Král, Petr ; Kvapilová, Marie ; Vrtílková, V. ; Krejčí, J.
Časově závislá plastická deformace-creep je jedním z nejdůležitějších degradačních faktorů, určujících životnost zirkoniových slitin, určených k pokrytí jaderného paliva vodou chlazených reaktorů v jaderné energetice. Příspěvek je věnován creepovým zkouškám povlakových tyčí slitiny Zr1%Nb (modifikace slitiny E110) používaných v reaktorech typu VVER. Vedle standardní creepové zkoušky při konstantním tahovém napětí bude demonstrována nestandardní speciální creepová zkušební metoda umožňující měření velmi malých creepových deformací při napětích blížících se reálným podmínkám namáhání v reálné praxi.

Detailed record
2024-03-24
00:04
NUMERICAL STUDY OF UNIVERSAL BEAM (I SECTION) UNDER BENDING LOAD WITH CRACK
Morán, Alvarez J. ; Seitl, Stanislav ; Miarka, Petr
The structural components often contain cracks as a results of applied load. Therefore, these cracks must be studied how they affect the structural behavior and the total service life-time of the component. Bearing beams of the bridges have usually cross-section in the shape of an I-profile. In this contribution, a numerical parametric model was made in order to study the influence of the crack length, Poisson's ratio and web thickness on the stress distribution in the structural element, for which a three-point bending specimen was applied. The model is based on the linear elastic fracture mechanics (LEFM), with focus set on the determination of the stress intensity factor, as it is one of the main parameters used in the description of the stress fields in vicinity of the crack tip.

Detailed record
2024-03-24
00:04
MATERIAL MODEL PARAMETER IDENTIFICATION OF STAINLESS STEEL (AISI 304L)
Jindra, D. ; Kala, Z. ; Seitl, Stanislav ; Kala, J.
Identification of Ramberg and Osgood nonlinear material model parameters for hot rolled stainless steel material grade 1.4307 (AISI 304L) was conducted. Reference data (stress-strain relation) were obtained from experimental program performed on normalized specimens. Parametrical numerical finite element model was created using commercially available software ANSYS classic APDL, and the subsequent optimization process was conducted in the environment of OptiSLang software.

Detailed record
2024-03-24
00:04
MULTI-PARAMETER MTS AND SED CRITERION APPLIED ON A CRACK IN AN ALKALI-ACTIVATED CONCRETE SPECIMEN UNDER MIXED-MODE LOADING
Malíková, Lucie ; Miarka, Petr ; Simonová, H.
The paper is devoted to an analysis of a crack propagation in a semi-circular concrete specimen under three-point bending. I+II mixed-mode loading is ensured via an inclined crack. Crack deflection angle is investigated by means of the generalized/multi-parameter form of the Maximum Tangential Stress (MTS) criterion and Strain Energy Density (SED) criterion as well as experimentally. The multi-parameter fracture mechanics concept applied in this work is based on the approximation of the crack-tip stress field by means of the Williams series expansion (WE). It has been proved that this approach can help to describe crack behavior in some kinds of materials better than the classical (one-parameter: stress intensity factor) fracture mechanics. This conclusion is discussed also in this paper.

Detailed record
2023-12-31
04:37
INFLUENCE OF THE DEPOSITION PARAMETERS ON MICROSTRUCTURE AND PROPERTIES OF HVOF SPRAYED WC-CRC-NI COATING
Vražina, Tomáš ; Šulák, Ivo ; Poloprudský, Jakub ; Zábranský, K. ; Gejdoš, P. ; Hadraba, Hynek ; Čelko, L.
This paper investigates the influence of thermal spray parameters of the high-velocity oxygen fuel (HVOF) process on the properties of cermet coatings prepared from commercially available Amperit 551 WC-CrC-Ni powder. Three different processing parameters were applied to optimize the production process with the aim to achieve preeminent mechanical properties and fully dense material without microstructural defects. The deposition was carried out by a GLC5 gun. The velocity and temperature of powder particles in the spray stream were monitored by Accuraspray Tecnar diagnostic tool. The quality of deposited coatings was analyzed by means of light microscopy, scanning electron microscopy, and X-ray diffraction. The chemical composition of the used powder and sprayed WC-CrC-Ni coating was determined by energy dispersive spectroscopy. It was found that the spray parameters have a negligible effect on the resulting microstructure and phase composition of the coating. However, the porosity and surface roughness were significantly affected by the variation in process parameters. To assess the basic mechanical properties of HVOF sprayed coating instrumented Vickers hardness measurements were utilized. The coating hardness reached mean values over 1400 HV 0.1 and the indentation modulus varied from 152-279 GPa.

Detailed record
2023-11-12
00:02
NANOCERIA PREPARED BY ELECTRON BEAM EVAPORATION
Pizúrová, Naděžda ; Hlaváček, A. ; Kavčiaková, Zuzana ; Roupcová, Pavla ; Kuběna, Ivo ; Buršík, Jiří ; Sokovnin, S. Y.
Cerium oxide nanoparticles (nanoceria) are currently one of the most investigated nanomaterials because of their attractive properties used in biomedical applications, catalysis, fuel cells, and many others. These attractive properties are connected with the Ce3+ and Ce4+ valency state ratio. In the nanoparticle form, cerium oxides contain a mixture of Ce3+ and Ce4+ on the nanoparticle surfaces. Switching between these two states requires oxygen vacancies. Therefore, nanoceria's inherent ability to act as an antioxidant in an environmentally-dependent manner and a “redox switch” to confer auto-regenerating capabilities by automatically shifting between Ce4+ and Ce3+ oxidation states is significantly affected by surface morphology. Regarding this demanded behavior, we aimed to characterize synthesized nanoparticle surface quality and its influence on the cerium oxidation states. The received results were used to evaluate the synthesis method's suitability for suggested utilization. We used nanoparticles prepared by electron beam evaporation. This unique physical method includes nanoparticle creation through the fast cooling process followed by breaking radiation damaging nanoparticle surfaces to create surface off-stoichiometry. We prepared a sample containing clusters of a mixture of ultra-small nanoparticles and approximately 100 nm particles. X-ray diffraction confirmed the CeO2 phase in both components. To extract the finest component, we used centrifugal size fractionation. We received 200 nm clusters of 2-10 nm nanoparticles. Nanoparticle shapes and facet types were analyzed using transmission electron microscopy methods. We found out most nanoparticles were formed with truncated octahedrons containing {1,1,1} and {1,0,0} facet types and truncated cuboctahedrons containing {1,1,1}, {1,0,0}, and additional {1,1,0} facets. No octahedron (without truncation) containing only {1,1,1} facets was observed. Nanoparticle shapes containing {1,1,0} and {1,0,0} are suitable for redox activity. Some amount of irregular shapes, beneficial for redox activity, was also observed. Spectroscopy methods confirmed Ce3+ content.

Detailed record
2023-10-16
21:27
Influence of severe plastic deformation and subsequent annealing on creep behaviour of martensitic 9% Cr steel
Král, Petr ; Dvořák, Jiří ; Sklenička, Václav ; Horita, Z. ; Tokizawa, Y. ; Tang, Y. ; Kunčická, Lenka ; Kuchařová, Květa ; Kvapilová, Marie ; Svobodová, M.
The objective of the study is to evaluate the effects of severe plastic deformation (SPD) and annealing on creep behaviour of advanced tungsten modified creep-resistant 9 % Cr martensitic P92 steel. The as-received P92 steel was deformed by high-pressure torsion (HTP), high-pressure sliding (HPS) and rotary swaging (RS) at room temperature prior creep testing. These SPD methods imposed significantly different equivalent plastic strain in the range from 1 up to 20. Constant load creep tests in tension were performed in an argon atmosphere at 873 K and applied stress ranging from 50 to 200 MPa. The microstructure and phase composition of P92 steel were studied using a scanning electron microscope Tescan Lyra 3 and a transmission electron microscope Jeol 2100F. The results show that under the same creep loading conditions the HPT and HPS-processed P92 steel exhibited significantly faster minimum creep rates, creep fracture strain and the decrease in the value of the stress exponent of the creep rate in comparison with as-received P92 steel. However, it was revealed that the RS-processed specimens exhibited one order of magnitude lower minimum creep rate and lower ductility compared to commercial P92 steel. The creep curves for the HPT and HPS-processed states exhibited a pronounced minimum of strain rate. The pronounced minimum of strain rate disappeared when these states were annealed at 923K/500h before application of creep loading. The microstructure changes occurring during creep and different creep behaviour between as-received and deformed states are discussed.

Detailed record
2022-12-25
22:33
Advanced statistical evaluation of fatigue data obtained during the measurement of concrete mixtures with various water-cement ratio
Seitl, Stanislav ; Benešová, A. ; Blasón, S. ; Miarka, Petr ; Klusák, Jan ; Bílek, V.
The Basquin’s law is usually applied for the evaluation of fatigue properties of civil engineering \nmaterials. For materials like concrete, some researchers recommended applying the Weibull model. In this\ncontribution, Basquin’s law, Castillo-Canteli model and Kohout-Věchet model were applied for the advanced \nstatistical description of S−N curves (Wöhler curve). For the application of the models, the experimental data \nmeasured on reference concrete mixtures used for the development of self-healing concrete at the Faculty of \nCivil Engineering, TU Ostrava. Fitting data of applied models were compared and analyzed

Detailed record