Ústav fotoniky a elektroniky

Nejnovější přírůstky:
2017-03-17
18:38
Influence of H2O2 treatment on morphological and photoluminescence properties of hydrothermally grown ZnO nanorods
Yatskiv, Roman ; Grym, Jan
We report photoluminescence properties of hydrothermally grown ZnO nanorods (NRs) before and after hydrogen peroxide (H2O2) treatment. The H2O2 treatment introduces oxygen related defects and thus enhances chemisorption processes in ZnO NRs. These effects amplify interactions between the gas species and adsorbed oxygen and thus can influence sensing properties of ZnO NRs

Úplný záznam
2017-03-17
18:38
Monolayers of platinum nanoparticles prepared by dip-coating
Černohorský, Ondřej ; Grym, Jan ; Yatskiv, Roman ; Pham, V.H. ; Hudry, D. ; Dickerson, J.H.
Platinum is a transition metal known for its catalytic properties, which are further enhanced when employed in a nanoparticle form. We have recently shown that a monolayer of Pt nanoparticles deposited on semiconductor substrates forms high quality Schottky diodes, which were used in sensitive hydrogen sensors with a detection limit of 1 ppm of H-2 in N-2. Preparation of ordered monolayers of Pt nanoparticles is essential for the understanding of the behaviour of such an interface. To obtain a hexagonal closed-packed nanoparticle array, we prepared Pt nanoparticles stabilized by oleylamine and oleic acid with a narrow size distribution and uniform shapes. A monolayer prepared by dip-coating of Si substrate in the suspension containing Pt nanoparticles showed hexagonal arrangement within separate domains with the surface coverage up to 90%. The increase of the surface coverage with increasing withdrawal speed of the dip-coating process was observed

Úplný záznam
2016-03-08
13:53
DEPOSITION OF PVP-PROTECTED PLATINUM NANOPARTICLES ON SEMICONDUCTOR SUBSTRATES FOR HYDROGEN SENSING
Černohorský, Ondřej ; Yatskiv, Roman ; Grym, Jan
High quality Schottky diode hydrogen sensors were prepared by the deposition of colloidal graphite on n-type InP substrates partly covered with PVP-protected Pt nanoparticles (NPs). A sub-monolayer of the Pt NPs was created by simple evaporation of the solvent in which Pt NPs were dispersed. The Pt NPs serve to dissociate hydrogen molecules into atomic hydrogen, which is absorbed at the metal-semiconductor interface. Hydrogen absorption leads to the formation of the dipole layer, which changes the Schottky barrier height and results in the increase of both forward and reverse current. The proposed hydrogen sensor showed high sensitivity response of similar to 10(6) to 1000 ppm H-2 in N-2 at room temperature

Úplný záznam
2015-01-05
14:24
Electromagnetic-based nano-resolution microscopies for biological research
Kučera, Ondřej ; Cifra, Michal
Research of cell biology is principally related to progress in imaging under diffraction limit of visible light and to the functional imaging. This paper brings short review of experimental techniques including Photonic force microscopy, Scanning microwave microscopy and other relevant techniques. The possibility of employing these techniques for elucidation of endogenous biological electromagnetic activity is discussed

Úplný záznam
2015-01-05
14:24
Electric field generated by higher vibration modes of microtubule
Cifra, Michal ; Havelka, D. ; Kučera, Ondřej ; Pokorný, Jiří
Certain structures in a living cell may generate electric oscillations. Microtubules, which form a part of a cellular skeleton, belong to this class of structures and ful-fill all conditions for generation of electric oscillations in kHz÷GHz band. We present selected results from calculations of the oscillatory electric field generated by higher vibration modes of microtubules. We propose that the electric field of certain modes may play specific function in cellular organization

Úplný záznam
2014-12-11
17:16
Time and frequency transfer in all-optical network
Smotlacha, V. ; Kuna, Alexander
This paper describes usage of all-optical network for time metrology application - Time and frequency transfer between two geographically distant sites. Although several approaches exist, there is no production implementation yet. Our method is based on newly developed adapters utilizing channels in a DWDM (Dense Wavelength-Division Multiplexing) network. We present results of tests performed in real production all-optical network including the time transfer between atomic clocks in Prague and Vienna over more than 500 km long optical path

Úplný záznam
2014-03-27
14:44
Event Timing Device Providing Subpicosecond Precision
Pánek, Petr ; Kodet, J. ; Procházka, I.
We are reporting on the latest experimental results achieved with an event timing device using a surface acoustic wave filter as a time interpolator. During the tests of the first version of the device, the noise of the filter excitation was identified as the dominant source of the measurement error. Therefore a new concept of the excitation with very low level of the noise energy was designed. This new solution led to considerable improvement of the device performance. It results from the experimental measurements that the single shot precision is repeatedly lower than 500 fs RMS when time marks generated synchronously with the time base are measured. When asynchronous time marks are split into two event timers and the resulting time difference is measured, the single shot precision is below 700 fs RMS per channel. In this case the measurement is affected not only by random errors, but also by non-linearity of the time interpolation. The temperature dependence is below 0.1 ps/K. Operating the device in a common laboratory environment without temperature stabilization, the stability TDEV better than 3 fs has been routinely achieved for range of averaging intervals from 10 s to several hours

Úplný záznam
2014-03-27
14:44
Time and Frequency Transfer Using Satellite Based Augmentation System GAGAN
Pánek, Petr ; Kuna, Alexander
Aided Geo Augmented Navigation) is an Indian SBAS (Satellite Based Augmentation Systems). In contrast to the European EGNOS, this system already supports the navigation function and it transmits signals both in L1 and L5 frequency channels. We used the GAGAN signals for an experimental common-view time transfer between IPE Prague and PTB Braunschweig which is a distance of 370 km and we also tested the time transfer properties using a single clock common-view. The L1 and ionosphere-free code measurements have markedly lower accuracy compared to a GPS common-view because of rather narrow bandwidth of the SBAS signal in L1 frequency channel. L5 code measurement provides much better precision. It results from the single clock common-view that the observed fluctuations can be described as white noise with standard deviations of 6 ns, 1.3 ns and 14 ns for L1, L5 and ionosphere-free combination. The results obtained from the carrier phase measurements are promising. The single clock common-view precision was approximately 30 ps RMS even for the ionosphere-free combination.

Úplný záznam
2014-03-27
14:44
Single Photons Optical TwoWay Time Transfer Providing Picosecond Accuracy
Procházka, I. ; Blažej, J. ; Kodet, J. ; Pánek, Petr
We are reporting on a new approach to an optical two-way time transfer based on signals of individual photons. This approach enables to reach extreme timing stabilities and minimal systematic errors using existing electro-optic technologies. In our indoor experiment we have achieved sub-picosecond precison and 3 ps accuracy of a two-way time transfer via free space optical channel. The entire system is compact and simple. It is a perspective technique for space application, where it might provide picosecond accuracies over space distances

Úplný záznam
2014-03-27
14:44
Local ties controlin application of laser time transfer
Kodet, J. ; Schreiber, U. ; Eckl, J. ; Procházka, I. ; Pánek, Petr
In many fundamental physical experiments time plays an important role. The standard way for the comparison of time and frequency is the application of GNSS signals and the Two-Way Satellite Time and Frequency Transfer - TWSTFT. This technique is based on radiofrequency signal transmission. Recently, there was a rapid increase of optical time comparison development, which uses the Satellite Laser Ranging network (SLR). Currently the French project T2L2 is in operation on board of Jason 2 and the European Space Agency project ELT in support of the Atomic Clock Ensemble in Space (ACES) is under development. The goal of both projects is the time synchronization with a precision below 40 ps rms and an absolute error well below 100 ps. Comparing the results of the optical time transfer with the GNSS time comparison requires unprecedented control of the local ties between the different observation techniques. One of the possible methods is the application of the Two Way Time Transfer (TWTT) on a single coaxial cable. Such a system can be implemented using two or more event timers, which are interconnected by a standard coaxial cable.

Úplný záznam