National Repository of Grey Literature 104 records found  1 - 10nextend  jump to record: Search took 0.01 seconds. 
Preparation and characterization of triple-IPA for the formation of vesicular systems
Novotná, Ludmila ; Pekař, Miloslav (referee) ; Mravec, Filip (advisor)
This thesis deals with the preparation and characterization of vesicular systems consisting of triple-IPA (ion pair amphiphile with three hydrophobic chains). For the preparation of tripleIPA were used double-chain cationic surfactants dimethyldimyristylammonium bromide (DMSAB), dimethyldipalmitylammonium bromide (DPAB), dimethyldioctadecylammonium bromide (DODAB) and dimethyldioctadecylammonium chloride (DODAC) and the singlechain anionic surfactant sodium dodecyl sulfate (SDS). Among the cationic surfactants, DMSAB and DPAB were selected to be studied more thoroughly. Triple-IPAs were prepared by mixing solutions of oppositely charged surfactants in equimolar ratio, and the resulting triple-IPA precipitate was filtered and dried. From the obtained powder, vesicular systems were prepared by rehydration and sonication. Cholesterol and cationic surfactants, from which the triple-IPAs were prepared, were used to stabilize the cationic vesicles. The properties of the vesicular systems were evaluated by dynamic and electrophoretic light scattering measurements and turbidimetry. The dispersion solutions with the addition of cholesterol were less turbid; therefore, it can be assumed that they supported the formation of cationic vesicles. The optimum cholesterol content is 20 mol. %. At this concentration, the effect of cholesterol on vesicle membrane reorganization becomes apparent and the cationic system remains monodisperse. A positive zeta potential in the stable region was determined for all prepared solutions, which was further increased by the addition of a positive surfactant. The most suitable cationic surfactant for the preparation of triple-IPA is DPAB, which is easy to work with, produces the most monodisperse systems and has the lowest measurement uncertainties.
Microrheology with Fluorescence Correlation Spectroscopy
Kábrtová, Petra ; Sedláček, Petr (referee) ; Mondek, Jakub (advisor)
A comparison of three passive microrheological techniques was made with the emphasis on FCS. Fluorescently labelled and unlabelled polystyrene particles were used to probe a microrheological response of glycerol solutions, Mili-Q water and sodium hyaluronate solutions. In addition, for FCS technique an approximated equation for calculation of MSD values was derived and verified. It was found that FCS outmatches current microrheological techniques of DLS and video-based particle tracking by its ability to gain a broader data range including the area in which, until now, it was impossible to describe a microrheological behaviour of samples reliably.
Hyaluronan micro- and nanoparticles
Mourycová, Jana ; Marián, Lehocký (referee) ; Pekař, Miloslav (advisor)
The aim of this thesis was to prepare hyaluronic acid micro- and nanoparticles based on electrostatic interactions with oppositely charged molecules. Following parameters were monitored: correlation function behavior, the particle size and zeta potential value. At the beginning, it was necessary to study the behavior of hyaluronan in solution by dynamic light scattering measurement. Micro- and nanoparticles were prepared by mixing different volume ratios of negatively charged hyaluronan and positively charged polyarginine or cetyltrimethylammonium bromide. Micro- and nanoparticles were prepared in aqueous solution as well as in 0,15 M sodium chloride solution (physiological solution). In the case of the hyaluronan solution a polydisperse character of hyaluronan was detected. It was found that the dissolution of hyaluronan in the physiological solution gives us the smaller particle size in opposite to particle size obtained from the same concentrations of hyaluronan dissolved in water. Furthermore, it was found that systems composed of hyaluronan and polyarginine create particle size of about 100 nm. Whereas systems consisting of cetyltrimethylaminoum bromide and hyaluronan form larger particles, in units of hundreds of nanometers, the particle size in physiological solution were smaller than the same systems dissolved in aqueous solution.
Preparation and characterization of complex liposomal for drug delivery systems
Szabová, Jana ; Pekař, Miloslav (referee) ; Mravec, Filip (advisor)
This diploma thesis deals with the preparation and characterization of stealth liposomes and their combination with trimethylchitosan (TMC). This complex could find application in the field of inhalation administration. Stealth liposomes were prepared from neutral phophatidylcholine, negatively charged fosfatidic acid and polyethyleneglycol bounded to phosphatidylethanolamine. We have managed to prepare stealth liposomes with suitable properties that should guarantee passive targeting without evocation an immune response, despite the content of the negative component. We also found a suitable method of preparation for stealth liposome–TMC complex, where the change of size and zeta potential confirmed the non–covalent bound between two components despite the content of the polyethyleneglycol.
Use of some encapsulation techniques to controlled release of active substances in food and cosmetics products.
Skoumalová, Petra ; Rittich, Bohuslav (referee) ; Kráčmar, Stanislav (referee) ; Márová, Ivana (advisor)
The presented doctoral thesis is focused on preparation, characterization and application of organic micro- and nanoparticles as transport systems for active components and some their complex natural sources. Active component were packed into liposomes and polysaccharide particles. As active components were used caffeine, some drugs – clotrimazole and ibuprofen, further antioxidants and vitamins. Antimicrobial herbs and spices extract, antimicrobial peptides lysozyme, nisin and other antimicrobial ingredients were encapsulated too. Encapsulation of selected hydrolytic enzymes was tested, too. Particles were also used for encapsulation of probiotic strains Bifidobacterium breve and Lactobacillus acidophilus and prebiotic components. These prebiotics were co-encapsulated into capsules with probiotic cells. Natural extracts were encapsulated e.g. extracts of guarana, ginseng, goji, green barley, propolis, black, green and white tea, coffee, fruit and vegetable extracts. The efficiency of encapsulation was determined by HPLC/PDA and by spectrophotometry. Long-term stability of particles and amount of released component in model/real foods, in model cosmetic conditions and in a model physiological environment were monitored too. Size of prepared liposomes and polysaccharide particles was determined by dynamic light scattering and by light microscopy and electron microscopy, respectively. Stability of the particles was measured using a zeta potential. Also, analytical centrifugation was used to measurement of sedimentation velocity and stability of the prepared particles. The antimicrobial activity were tested using two Gram-positive (Bacillus subtilis, Micrococcus luteus), two Gram-negative (Escherichia coli, Serratia marcescens) bacteria and one fungal strains (Candida glabrata). For determining the antimicrobial properties of active component and prepared particles two the most widely used methods were used - agar diffusion method and broth dilution method. The viability of probiotic strains were performed using flow cytometry and fluorescence microscopy. Encapsulation of active component was successful in all types of particles. Liposome showed a very good long-term stability mainly in water conditions with neutral pH and polysaccharide particles were stable in acidic conditions. Prepared particles showed a very good stability in model stomach environment, while in model intestines environments particles were disintegrated and active component were released. Prepared particles with encapsulated caffeine as well as other tested antioxidants and vitamins could be used to modern types of energy drinks, food supplements and also for some cosmetics applications. Encapsulated antimicrobial components could be used for food application as well as for cosmetics and pharmaceutical application like antimicrobial wound formulation. Encapsulated enzymes can be used for controlled release of proteases in wound healing, as delivery systems in digestive tract and as a part of pharmaceutical preparative and food supplements for enzyme therapy. The study revealed that encapsulation of probiotics and also co-encapsulation of probiotics with prebiotics exhibited longer stability of particles and survival bacterial cells. So, prepared particles are suitable for use to food product with beneficial effects on the human body.
Stability of vesicular complexes against changes in their concentration
Velichová, Veronika ; Marková, Kateřina (referee) ; Mravec, Filip (advisor)
This bachelor thesis is focused on the stability of vesicular systems that consist of ion pair amphiphile. These catanionic vesicles were prepared from single-chained surfactants CTAB cetyltrimethylammonium bromide) and SDS (sodium dodecyl sulphate), which were stabilized by adding double-chained surfactant DODAC (dimethyldioctadecylammonium chloride) with 43 mol.% cholesterol. The aim of the thesis was to verify the stability of vesicular systems against changes in their concentration. For the measurement, a concentration series was prepared by diluting vesicles with deionized water. The stability was evaluated by dynamic (DLS) and electrophoretic (ELS) light scattering measurements at weekly intervals for four weeks. By DLS method were determined the average values of the size of vesicles and their changes during the measurement, the method ELS provided the information about changes of charge with different concentration in time. Samples with a higher concentration, i.e. no dilution till tenfold dilution of the vesicle solution, were marked as stable, higher values of average sizes and lower values of zeta potential were measured at solution with lower concentrations, according to which such diluted vesicles can be described as unstable. There were also visual observations made, but no visible aggregation in the solutions was observed. Furthermore, the aggregation behavior of the vesicles was observed by fluorescence spectroscopy using pyrene as fluorescent probe.
Study of interaction of negatively charged vesicular systems with polycations
Repová, Romana ; Klučáková, Martina (referee) ; Mravec, Filip (advisor)
This diploma thesis deals with the preparation and characterization of negatively charged catanionic vesicular systems and their combination with selected polycations. The catanionic vesicular system was prepared by mixing of two oppositely charged surfactants SDS and CTAB. The negative charge as well as the stability of the vesicular system was provided by the incorporation of phosphatidic acid. Polycations, DEAE and TMC, have been selected for use in a pharmaceutical applications. Characterization of the prepared systems was performed by measuring DLS and ELS. The results indicate that we were able to prepare stable negatively charged vesicles that were eligible to non-covalently interact with selected polycations.
Possibilities of encapsulation of particular types of macromolecules and bacteria
Kapar, Jiří ; Obruča, Stanislav (referee) ; Márová, Ivana (advisor)
Presented diploma thesis is focused on testing encapsulation methods of enzymes and probiotic bacteria. In the theoretical part a summary of different encapsulation techniques used in food industry is given. Further, materials for encapsulation, above all polysaccharides are presented. Next, some procedures of encapsulation of biopolymers and microorganisms – mainly enzymes and probiotic cultures are discussed. In the experimental part methods for preparation of several types of particles based on polysaccharides and liposomes are introduced. Particles were used for encapsulation of selected hydrolytic enzymes and probiotic strains Bifidobacterium breve a Lactobacillus acidophilus. The encapsulation effectiveness was evaluated by analysis of total proteins and enzyme activities. Particles sizes and their stability in water, in selected model foods and model body fluids were observed, too. According to results obtained in this work it was found that encapsulation of enzymes into polysaccharide particles were succesfull in all types of particles (encapsulation effectivness was more than 50 %). Polysaccharide particles showed a very good stability in body fluids as well as in model foods. As the most suitable materials for enzymes encapsulation chitosan and liposomes were found. Polysaccharide particles were used also for the encapsulation of microorganisms. The stability of particles with lactic acid bacteria was similar to particles containig enzymes, very good stability was verified aslo in model foods and model body fluids. Encapsulation enables long-term stabilization of biologically active compounds as well as posibility of their transport and controlled releasing in gastrointestinal tract. Encapsulation of probiotic bacteria could preserve their viability and long-term survival until the product expiration date. Thus, encapsulation is one of the most promissing procedures for production of foods and food suplements of great quality and high additional value.
Preparation of luminescent nanoparticles for 3D imaging
Smolka, Rastislav ; Hrabal, Michal (referee) ; Vala, Martin (advisor)
The aim of this bachelor thesis was to study a suitable methodology for the preparation of fluminiscent nanoparticles and to characterize their optical properties associated with various physical properties of environment. Also, their potential use as a means of monitoring biological preparations in 3D microscopy using multiphoton absorption. In particular, we deal with nanoparticles prepared from N,N-diphenylamino-2,5-diphenyl-1,4-distyrylbenzene cyanide and their fluorescence and absorption spectra. Using the dynamic light scattering method and fluorescence spectroscopy, the dependence of the size of the prepared nanoparticles, the change in their fluorescence properties and the change in the quantum yield is observed, depending on the changing environmental properties. Data from multifoton absorption measurements demonstrate that this substance responds to multifoton excitation. It has been shown that this substance retains its unique fluorescence properties also in the form of nanoparticles and thus appears to be a suitable candidate for the observation of biological preparations using multifoton fluorescence microscopy. Therefore, the continuation of this work could be the mere determination of the total multifoton absorption cross section of these prepared nanoparticles.
Native hyaluronan as a delivery system for hydrophobic drugs
Černá, Eva ; Mravec, Filip (referee) ; Pekař, Miloslav (advisor)
The aim of this paper is to discover whether it is possible to use the native form of hyaluronic acid as a hydrophobic drug carrier for a targeted distribution in the body. In its structure, hyaluronic acid is a linear high molecular weight biopolysaccharide which is found in most living organisms. Hyaluronan is involved in many physiological processes and therefore is essential for the functionality of the human body. It is in most tissues of the human body, high concentration is in the skin, the vitreous body and is also observed in cancer cells that contain several receptors for hyaluronan. These receptors include CD44 and RHAMM. The interaction of the hyaluronic acid delivery system and the hydrophobic medicinal with these receptors could ensure a free passage for drugs to the affected tissue, where the release of the drug would destroy the affected cells. The drug would directly target the damaged tissue and did not burden the rest of the body like the cytotoxic agents do. In this paper the native form of hyaluronic acid, which we normally find in the human organism, was chosen as the carrier. Its properties do not stand above other carrier systems, but its biocompatibility and biodegradability in the body greatly exceed them. High molecular weight hyaluronic acid was used as a carrier and the hydrophobic dye sudan red G, a substance of similar properties, was used instead of a hydrophobic drug.

National Repository of Grey Literature : 104 records found   1 - 10nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.