National Repository of Grey Literature 40 records found  beginprevious31 - 40  jump to record: Search took 0.01 seconds. 
Microfibers based on polyhydroxybutyrate for medical applications
Gregušková, Zuzana ; Obruča, Stanislav (referee) ; Přikryl, Radek (advisor)
Diplomová práca je zameraná na mikrovlákna na báze biopolyméru poly(3-hydroxybutyrátu) a ich využitie v medicínskych aplikáciách. Teoretická časť práce sa zaoberá štúdiom procesu tvorby vláken pomocou technológie odstredivého zvlákňovania, jeho kinetikou a faktormi ovplyvňujúcimi vznik a vlastnosti vláken. Teoretická časť sa následne orientuje na krátky prehľad biopolymérov používaných v tejto technológii, charakteristiku materiálu poly(3-hydroxybutyrátu) a taktiež prezentuje návrh potenciálnej cieľovej aplikácie daných mikrovláken. Praktická časť sa koncentruje sa prípravu mikrovláken zo spomínaného poly(3-hydroxybutyrátu). Sledované a optimalizované sú viaceré parametre vedúce k lepšej zvlákniteľnosti materiálu. Praktická časť je rozšírená o modifikáciu polymérneho roztoku prídavkom iných biopolymérov a zmäkčovadiel a prípravu mikrovláken z takto modifikovanej polymérnej zmesi. Pozornosť je venovaná taktiež optimalizácii procesných parametrov. Pripravené mikrovlákna sú následne analyzované a charakterizované viacerými metódami a vzájomne porovnávané s cieľom vyvinúť alternatívu k súčasne používaným substrátom pre rast buniek v 3D.
Effect of chemical structure of plasticizer on material properties based on polyhydroxybutyrate
Stehnová, Ivana ; Alexy, Pavol (referee) ; Přikryl, Radek (advisor)
This master’s thesis deals with plasticization of poly(3-hydroxybutyrate), polylactid acid and their blend. It explores effect of chemical structure of plasticizer on mechanical properties of this polymer blend and on its diffusion from the polymer blend. Syntheses of plasticizers based on oligomeric polyadipates, citrates, lactate and esters of 2 ethylhexanoic acid with poly(ethyleneglycol) were carried out. Molecular weight distribution of synthesized plasticizers was determined using gel permeation chromatography. Poly(3-hydroxybutyrate), polylactid acid and their blend were plasticized with synthesized and commercial plasticizers. From commercial, chosed plasticizers were based on citrates and ester of 2-ethylhexanoic acid with poly(ethyleneglycol). Thermal stability of selected commercial plasticizers in polylactid acid was studied using thermogravimetry. Diffusion of plasticizers from poly(3-hydroxybutyrate), polylactid acid and their blend during exposure to 110 °C was also investigated. Mechanical properties of prepared blends were tested by tensile test. Almost all used plasticizers showed positive softening effect in blend. The highest elongation at break was detected for the blend with commercial acetyltributylcitrate, where elongation at break reached 328 % relative to 21 % for neat non-plasticized blend.
Biocomposite material for 3D print in the field of regenerative medicine
Chaloupková, Kateřina ; Obruča, Stanislav (referee) ; Přikryl, Radek (advisor)
The presented thesis deals with preparation of material for use in regenerative medicine based on poly(3-hydroxybutyrate) and its characterization. In addition to poly (3-hydroxybutyrate), there were used other materials lactic acid (PLA), tricalcium phosphate (TCP) and two types of plasticizers Citroflex®B-6 (CB6) and Syncroflex3114 (S3114). These materials were selected based on their biocompatibility and, in the case of TCP, also bioactivity. TCP allows new bone to grow on the surface of the scaffold. PLA was used to improve the mechanical properties of the material. Both plasticizers have been used to improve the processability of the material. Theoretical part of this work contains a literature review describing basic information about used materials. Aim of the experimental part is to prepare the material, characterization of properties and determination of printability on a 3D printer. The material is examined for thermal properties by thermogravimetric analysis and differential scanning calorimetry. This work also deals with the matter of 3D printing, especially FDM technology. It has been found that materials containing the syncroflex plasticizer are better processed and therefore printed on a 3D printer. The printability tests performed are temperature towers and filling studies. Printed samples were subjected to mechanical tests of tensile and bending tests. Experiments of cytotoxicity and biocompatibility of the material were also performed. Within the work, TCP particles were characterized using a particle size analyzer. The average TCP particle size is 10,76 µm. Using SEM-EDX, the distribution of TCP in sample filaments was subsequently observed, where it was found that by mixing TCP particles with the remaining components of materials, TCP particles agglomerate into formations up to 20 µm in size. Roughness of materials was determined by confocal microscopy. Cytotoxicity was also tested in the extracts of samples on mouse fibroblasts. Cytotoxicity was determined by metabolic activity assay and light microscopy. The metabolic activity test proved the biocompatibility of the observed materials; therefore, it was possible to perform cell proliferation and biocompatibility tests directly on the samples. Assays were performed using human mesenchymal stem cells. DNA quantification was used to determine cell proliferation. Shape of cells was subsequently observed by confocal microscopy. Tests confirmed growth of cells and their appropriate shape. Stem cell differentiation into bone was performed by measuring alkaline phosphatase activity.
Isolation of lignin from grape seeds and its application as filler for polyhydroxyalkanoates (PHA)
Vostrejš, Pavel ; Vítová, Eva (referee) ; Kovalčík, Adriána (advisor)
This diploma thesis deals with 1) the preparation of biodegradable polymer films based on polyhydroxyalkanoates (PHA) and 2) their modification by lignin as an active additive. The motivation for this work was to prepare active packaging material for food packaging. Polymer films were prepared by blending of neat crystalline poly(3hydroxybutyrate) (P3HB) and amorphous polyhydroxyalkanoate (PHA). The lignin was isolated from grape seeds derived from grape pomace. The solubility of lignin in chloroform was improved by acetylation. The properties of the isolated lignin were determined by elemental analysis, ash content, and infrared spectroscopy (FTIR). Lignin was used as an active additive for the modification of polymeric films prepared by solution casting of P3HB or P3HB blended with amorphous polyhydroxyalkanoate. The effect of different concentrations of lignin in the range of 1 to 10 % was tested. The lignin type and concentration had a different influence on the final thermal and mechanical behaviour of polymeric films. Lignin increased the values of the Young modulus and tensile strength of the prepared films. Differential scanning calorimetry data confirmed that lignin positively modified crystallization kinetics of P3HB. Thermogravimetry was used to analyse the thermal stability of PHA films. Lignin markedly increased the thermal stability of PHA films. However, acetylated lignin harms the mechanical properties of films. Moreover, this work showed that lignin isolated from grape seeds and added into PHA films proved its high antioxidant capacity. PHA films with lignin displayed much better gas barrier properties compared with PHA films without lignin. The prepared bioactive PHA films fulfil the requirements for sustainable food packaging with high antioxidant capacity and excellent gas barrier properties.
Analysis of biodegradable polymers in soils
Paluchová, Natálie ; Řezáčová, Veronika (referee) ; Kučerík, Jiří (advisor)
Currently, there is a growing interest in usage of biodegradable polymers, regardless of their possible risk of generation of residues. The methods that are used for determination of residues usually include pre-treatment and are expensive and time consuming. Therefore, this bachelor thesis focuses on the development and verification of analytical method that would identify and quantify of biodegradable polymer residues in soils to eliminate the problems arising from sample pre-treatment. Therefore, thermogravimetry, which appears to satisfy the above conditions, was used for the analysis. The area of polymer degradation in three types of soils during thermal oxidation and the effect of polymer on soil during the analysis was investigated. Poly(3 hydroxybutyrate) was chosen to be the representative biodegradable polymer and there were two approaches used to its detection and quatification. The methods were tested for 6 concentrations of poly(3–hydroxybutyrate) (0,1; 0,5; 1; 2; 3; 5 %). The first approach concentrated on the usage of polymer analysis in the presence of a blank (without contaminat), which was subtracted from the blank. Using this method, the temperature interval of polymer degradation and weigh loss changes in this interval were observed. The second method focused on a soil universal model, that allows the identification and quatification of samples when the blank is not present. The blank is simulated by 19 equations, that allow the identification of intervals, in which degradation of samples occurs and also it provides the possibility to determinate the type of the polymer. However, the principle component analysis indicated that the method is sensitive to the type of soil and therefore it needs adjustments. Samples were incubated for 4 months, to verify the sensitivity of the method, in case of partial or complete decomposition of samples by soil microorganisms,. Thereafter, the concentrations of poly(3-hydroxybutryrate) in soil determined by respirometry and thermogravimetry were compared. The results indicated that accelerated degradation caused by poly(3-hydroxybutrylate) or contamination of the sample with the surrounding atmosphere during respiration may have occurred. Residual poly(3–hydroxybutyrate) was thermogravimetrically verified and results were compared to respirometry. According to the results it can be observed that there was an interaction between the soil organic matter and biota or contamination of the sample with the surrounding atmosphere. The results revealed, that there is a possibility of determination of biodegradable polymers in soils by thermogravimetric analysis. There are good results using the blank method, but it is limited by the existence of a blank. The method that is using the soil universal model (without blank) has a great potential in the future, but adjustments still need to be done.
Release of active substances from porous structures based on poly(3-hydroxybutyrate) (PHB)
Černeková, Nicole ; Veselá, Mária (referee) ; Kovalčík, Adriána (advisor)
This bachelor thesis deals with the study of the release of active substances from porous structures based on poly(3-hydroxybutyrate) (P3HB). The theoretical part describes the basic characteristics of polyhydroxyalkanoates, their effect on the organism and method of electrospinning. In the experimental part, solutions of poly(3-hydroxybutyrate) in a solvent mixture of dichloromethane and chloroform were electrospun in three different ratios. The morphology of the formed fibrous porous structures was assessed by scanning electron microscopy, based on which the active substance, the antibiotic Levofloxacin, was incorporated into suitable structures. Antimicrobial activity of the antibiotic released from prepared porous structures was tested by the agar diffusion method against gram-negative bacteria Escherichia coli and Serratia marcescens, the gram-positive bacterium Micrococcus luteus and against the yeast Candida glabrata. The results showed a significant antimicrobial effect of the prepared samples against all bacterial cultures, in the case of the culture of yeasts, no zones of inhibition occurred. Next, the course of the active substance release from the prepared electrospun meshes was studied spectrophotometrically depending on the morphological structure. It was found that the active substance was successfully incorporated into electrospun fibers and the course of the drug release depended on the morphology of P3HB electrospun meshes.
Grafting VTMOS onto PHB
Novotný, Igor ; Petruš, Josef (referee) ; Kučera, František (advisor)
Diploma thesis deals with the grafting of vinyltrimethoxysilane (VTMOS) onto poly(3–hydroxybutyrate)PHB. Subsequent characterization of the amount of grafted VTMOS and changes in the thermal properties associated with the rate of crystallization. The theoretical part deals with mechanism and the influences of grafting. In the experimental part VTMOS was grafted onto PHB without subjecting VTMOS to hydrolysis and subsequent crosslinking. By differential scanning calorimetry (DSC) and Avrami equation, the effect of grafted silane group on pure was studied. The MVR was used to compare the rheological properties of initial PHB, grafted PHB and crosslinked PHB by siloxane linkages.
Stress resistance of bacterial pure cultures and mixed cultures
Chorvátová, Michaela ; Slaninová, Eva (referee) ; Obruča, Stanislav (advisor)
The purpose of this bachelor thesis was to investigate a stress resistance of bacterial monocultures and defined mixed culture. The theoretical part contains a literary review, which deals with the general stress resistance of bacteria and the dynamics of their growth. Furthermore, polyhydroxyalkanoates are introduced, as well as their involvement into stress response of bacteria. In this review was also elaborated the flow cytometry, significant modern method, which was important part of the experiment. In the experimental part, the resistance to osmotic and temperature stress was studied. For this purpose, monocultures of the PHA accumulating strain Cupriavidus necator H16 and the mutant strain Cupriavidus necator H16/PHB-4 unable to accumulate PHA were used. The defined mixed culture was prepared by cocultivating these two strains. Overall, the accumulation and utilization of PHA, namely poly (3-hydroxybutyrate), increased the resistance of bacteria. The most notable was the increase in the case of osmotic stress, when salt concentrations did not significantly reduce the viability of Cupriavidus necator H16 against a mutant strain which viability decreased with growing intensity of stress. On the other hand, experimental temperatures did not have a significant effect on cell viability. The highest growth of bacteria was recorded, in most cases, at their temperature´s optimum of 30 °C.
Properties of nanocomposite based on PHB and HNT
Stehnová, Ivana ; Pavliňáková, Veronika (referee) ; Přikryl, Radek (advisor)
This bachelor’s thesis deals with nanocomposite containing polyhydroxybutyrate matrix filled with halloysite nanotubes. It summarizes findings about optimization of surface modification of the filler, compatibility between the filler and polymer, distribution of the filler in the composite and effect of the filler surface modification, the composite preparation and the filler content on mechanical properties of the composite. Surface modification of the filler was done using 3-(trimethoxysilyl)propylmethacrylate. Efficiency of the silanization was verified by thermogravimetric analysis and Raman spectroscopy. Concentrates containing the unmodified and the modified nanofiller in poly(vinylacetate) or poly(3-hydroxybutyrate) were prepared. Using these concentrates, composites containing 1 % and 3 % of the filler were prepared. Distribution of the filler in the concentrates and the composites and compatibility between the filler and polymer were observed by scanning electron microscopy. Mechanical properties of the composites were tested by tensile test.
Polyhydroxybutyrate modification by grafting of functional groups
Melčová, Veronika ; Tocháček, Jiří (referee) ; Přikryl, Radek (advisor)
Presented bachelor thesis deals with a characterization of the effect of chemical grafting on thermal and mechanical properties of poly(3-hydroxybutyrate). Two grafting methods were chosen, chlorination and fluorination of PHB. The aim of the theoretical part of the work was to create a complete literature review containing basic information about polyhydroxybutyrate and the latest scientific evidence about possibilities of chemical modification of this polymer. The experimental part describes the chemical treatment of the material itself, as well as preparation of samples for testing and performing the selected analysis. Chemically grafted polymers were subjected to thermogravimetric analysis to determine their thermal stability. Thermal behavior of materials was studied by differential scanning calorimetry. Also non-isothermal crystallization of samples was observed in order to evaluate the influence of the grafted halogen atom onto the nucleation activity of the polymer. Selected samples were also subjected to dynamic mechanical analysis and tensile test.

National Repository of Grey Literature : 40 records found   beginprevious31 - 40  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.