National Repository of Grey Literature 42 records found  1 - 10nextend  jump to record: Search took 0.00 seconds. 
Composite materials with enhanced coefficient of linear attenuation of ionizing radiation
Novotný, Kamil ; Petruš, Josef (referee) ; Kučera, František (advisor)
Ionizing radiation has many useful applications in the fields of healthcare, food industry, nuclear energy and others but poses a hazard to human health in higher doses. In this work, composite materials with enhanced ionizing radiation attenuation properties were prepared. Unsaturated polyester resin was reinforced with inorganic fillers containing elements such as bismuth or barium. Morphology of the samples was studied using scanning electron microscopy. Theoretical values of mass attenuation coefficients were obtained for photon energies 662 keV and 1253 keV using the XCOM software. The attenuation of ionizing gamma radiation was experimentally measured using radioactive sources 137Cs and 60Co. Linear attenuation coefficients and half value layers of the materials were determined using the obtained data. Addition of the fillers improved the shielding properties of the matrix. Composite containing bismuth oxide achieved the highest values of linear and mass attenuation coefficients. The experimental results were found to be in good agreement with theoretical values. Moreover, influence of the fillers on impact toughness has been evaluated.
Butyl Rubber Modified Using Expanded Graphite
Žůrek, Michal ; Petruš, Josef (referee) ; Kučera, František (advisor)
This work deals with the influence of expanded graphite (EG) as a reinforcing filler on the mechanical and tribological properties of vulcanizates of butyl rubber blends. Tensile strength, elongation at break, moduli (M100, M200, M300 a M500), and Young's modulus of elasticity of the prepared vulcanizates were studied by the tensile test method. In addition to the tensile test results, the dispersion of EG particles was studied on scanning electron microscopy (SEM) images of the fracture surfaces of the prepared vulcanizates. The filler-matrix interaction was evaluated using the Kraus model for filled rubber and the results were subsequently compared with SEM images of the EG particle-matrix interface on the fracture surfaces of the vulcanizates. The effect of EG on the properties of the vulcanizates was compared with the effect of common rubber blacks (N220 and N772). It was found that an important factor affecting the mechanical properties of filled vulcanizates is the dispersion of filler particles. EG dosage higher than 5 phr promotes the agglomeration of filler particles in the butyl rubber matrix, which negatively affects the mechanical properties of the blend. Vulcanizates filled only with EG have lower tensile strength than those filled with N220 or N772 blacks. By choosing an appropriate ratio of EG to blacks, higher mechanical strength was achieved than with the use of only one filler.
Biodegradable thermoplastics from renewable resources
Březinová, Štěpánka ; Kučera, František (referee) ; Petruš, Josef (advisor)
The theoretical part of diploma thesis summarizes the state of the art in the field of biodegradable thermoplastic materials, emphasizing polymeric materials made from renewable sources and the possibilities for their processing and for the modification of their useful properties. The experimental part of the thesis is focused on the preparation and characterization of biodegradable polymer blends based on thermoplastic starch (TPS) and poly(butylene adipate-co-terephthalate) (ECX). A suitable type of TPS was selected according to the rheological behavior of the melt for blending with ECX via extrusion technology. The degree of compatibility between TPS and ECX was evaluated by infrared spectroscopy (FTIR-ATR) and by examining the morphology of TPS/ECX blends using scanning electron microscopy (SEM). Affecting the mechanical properties, rheological behavior, and wettability of the prepared TPS/ECX was verified by testing the mechanical properties under tensile stress, determining the melt flow index (MFI), employing the oscillatory rheological test, and determining the maximum wettability. The experimentally obtained results show the possibility of optimizing the mechanical and rheological properties of TPS by blending with ECX. In terms of biodegradability, blends with a majority TPS content can be assumed to be more advantageous.
Copolymeric Acrylamide Gels: Preparation and Properties
Nováková, Pavlína ; Petruš, Josef (referee) ; Kučera, František (advisor)
The bachelor thesis deals with the preparation and properties of copolymer acrylamide gels. The theoretical part is focused on the general characteristics of gels, closer look at copolymeric acrylamide gels – preparation methods, various possibilities of initiation, crosslinking, and use of comonomers. Factors influencing swelling of the gel were described. The experimental level focuses on the preparation of neutral polyacrylamide gel and acrylamide copolymeric gel with anionic component, sodium acrylate. First, the formation of the copolymer and the presence of functional groups were verified by infrared spectroscopy with Fourier transformation. Then gels of different concentrations of sodium acrylate and the crosslinking agent, bisacrylamide, were prepared by radical solution polymerisation. The influence of the gel composition on the swelling degree in distilled water was investigated on the prepared samples. The selected samples were then swelled in environments of different pH and ionic strengths to assess the influence of the external environment on the swelling degree.
Application of functional fillers in composites: Effects of fillers content on the mechanical properties
Krhut, Jiří ; Petruš, Josef (referee) ; Poláček, Petr (advisor)
This work deals with the application of selected types of fillers and monitoring their addition to the specific properties of the resulting composite material. The theoretical part of this work includes a general description of composite materials, and selected types of matrices, followed by a brief description of the characteristics of particulate composites and the effect of fillers on selected material properties. In the experimental part, samples of polyester resin were prepared to contain the given content of filler based on aluminium hydroxide (Al(OH)3), expanded glass, hollow glass microspheres, and fillers based on nitrogen and phosphorus compounds. Subsequently, the influence of the used fillers on the rheological properties, flammability of the material, on mechanical and thermomechanical properties was monitored. Flame test methods, bending test methods and dynamic mechanical analysis (DMA) were used to evaluate the samples. Finally, the measurement was supplemented by an analysis of fracture surfaces using a scanning electron microscope (SEM). The addition of additives improved the fire resistance of the prepared materials. The mechanical and thermomechanical properties of the prepared materials differed significantly depending on the applied fillers and their content.
Electrical behaviour of polymeric composites with expanded graphite
Šimonek, Michal ; Petruš, Josef (referee) ; Kučera, František (advisor)
Electrically conductive thermoplastic composites made from graphene nanoplatelets or graphene precursors are a promising branch of new functional materials. Graphene nanocomposites were prepared via processing in an internal mixer from four extrusion grade polyethylenes (PE) and expanded graphite (EG). As a method of possible improvement of EG dispersion, compounding in presence of various compatibilizers is examined. Melt compounding was performed for 10 min at 200 °C and 60 rpm. The electrical conductivity of compression-molded samples was determined from a current voltage characteristic or direct resistance measurement. Composite morphology was characterized by scanning electron microscopy. Depending on the PE matrix and compatibilizer structure, different electrical conductivities and morphologies were observed, which corresponded in agreement with either percolation theory or the random-resistor network of Miller and Abrahams models. Substantial reduction of percolation threshold was achieved in compatibilized ultra-low density polyethylene where percolation occurred at 3,92 % vol.
Optimization and characterization of dimethacrylate-based resin
Baradzina, Lizaveta ; Petruš, Josef (referee) ; Poláček, Petr (advisor)
This diploma thesis was focused on the optimization and characterization of resins based on dimethacrylate monomers. The polymerization process was also monitored depending on the type and molar ratio of monomers used, on the content of barium glass filler and the presence of glass fibers. Changes in the viscoelastic properties of materials during polymerization were also investigated. The following methods were used to characterize the prepared dimethacrylate resins and composite materials based on them: viscosimetry, differential scanning photocalorimetry (DPC), photoreology, dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA). The dynamic viscosity of the prepared dimethacrylate matrices was determined by viscometry. Based on the results of DPC analysis of the tested resins, the dependences of heat flow on time, conversion on time and polymerization rate on conversion were created. With photoreology, the course of curing, the onset of the gelation point and changes in the viscoelastic properties of the systems were monitored. The viscoelastic properties of the cured composite materials were then determined by DMA in the three-point arrangement. TGA was performed to accurately determine the composition of the tested samples
Stabilizing epoxide systems in surface protective varnishes
Švardala, Daniel ; Tocháček, Jiří (referee) ; Petruš, Josef (advisor)
The diploma thesis describes the influence of humid conditions on the curing of epoxy resins by multifunctional amines. The aim of the experimental part was the identification of degradation products and their quantification, as well as the determination of the influence of humid conditions on the degree of hardening, modulus of elasticity, and flexural strength. Another goal was to optimize the formulation of the reactive mixture for the preparation of epoxy resin with lower susceptibility to carbamate bloom. The degradation products were evaluated by determining the mechanical properties by bending test according to the standard ČSN EN 179-1. The degree of hardening was monitored through temperature modulated differential scanning calorimetry (TMDSC). Degradation products were identified by Fourier transform infrared spectroscopy (FTIR) and quantified by UV-VIS spectroscopy. The morphology of the surface layer was monitored by confocal laser scanning microscopy (CLSM). The dependence of the relative humidity of the environment on the curing process of the epoxy resin and its resulting mechanical properties was determined. Based on the analyzes, a modification of the formulation for the suppression of spurious carbamate during the curing of the epoxy matrix was designed and experimentally verified.
Reactive extrusion of polymers by peroxides
Červený, Ladislav ; Petruš, Josef (referee) ; Kučera, František (advisor)
Diploma thesis deals with processing of two types of PP, HDPE, LDPE, PET, PA, PS, PMMA and ABS by reactive extrusion in presence of peroxides. The theoretical part summarizes existing knowledge about processing of used polymers. Reactive extrusion was carried out with a single screw extruder at 260 °C, 30 rpm and 60 rpm depending on peroxide used. One type of PP was processed in presence of Luperox 101, hydrogen peroxide, dicumyl peroxide and potassium persulfate. Luperox 101 and hydrogen peroxide were chosen for reactive extrusion of other polymers. The efficiency of selected peroxides on radical modifications of individual polymers during processing was evaluated by methods of rheological (MFI), structural (FTIR) and thermal (DSC) analysis.
Technology of injection molding of thermoplastic test specimens
Khamzin, Yersin ; Petruš, Josef (referee) ; Kučera, František (advisor)
The diploma thesis focuses on the optimization of technological parameters of plastic injection molding and the study of the influence of technological parameters on the quality of molded test specimens’ type 1A. The quality of molded parts for 3 types of polypropylene (PP) with different melt flow rate (Mosten GB 002, Mosten GB 218, Mosten MA 230) and 1 type of polystyrene (PS) (Krasten PS GP 154) was evaluated in terms of dimensional stability and weight. The contribution of software for modeling the plastic injection molding process was evaluated in this work. SOLIDWORKS Plastics software was used to optimize technological parameters. The construction of the bodies, mold and cooling system was constructed, and test bodies were produced on the basis of parameters obtained from the simulation of the injection molding process. Their quality parameters were compared with a 3D model and for each of the studied materials the optimal technological parameters were selected in terms of quality and the degree of influence of individual injection parameters on the quality of moldings was evaluated. The accordance of the results of the theoretical simulation with the real experiment was proved and a computational module independent of the optimized quality parameters, generally suitable for optimizing the quality parameters of the injected parts, was developed.

National Repository of Grey Literature : 42 records found   1 - 10nextend  jump to record:
See also: similar author names
3 Petrus, Jan
2 Petrus, Jiří
3 Petrus, Ján
Interested in being notified about new results for this query?
Subscribe to the RSS feed.