National Repository of Grey Literature 95 records found  previous11 - 20nextend  jump to record: Search took 0.02 seconds. 
Application of chemical and physical stresses in the late phase of growth to selected strains of microorganisms
Langer, Marek ; Holub, Jiří (referee) ; Szotkowski, Martin (advisor)
A wide spectrum of microorganisms is used in the biotechnological industry for production of meaningful metabolites; including carotenoids and chlorofyles with antioxidant effects, fatty acids, ubiquinone and ergosterol. Ways to increase yield of metabolites to maximum capacity are being researched to increase efficiency and economical sustainability in industry. One of the ways is the application of chemical stress factors on microorganisms as is described in this thesis. In the theoritical part certain microorganisms, their important intracellular metabolites and their metabolism are established. The last subchapter covers the usage of stress factors in industry. In the experimental part each microorganism was subjected to various concentrations of sodium chloride, cobalt(II) sulfate and iron(III) chloride. Significant increase of lipid production was registered after an application of sodium chloride on yeast strain Rhodosporium toruloides. An increase in production of torularhodin in Sporidiobolus pararoseus occured after application of iron salt. After an application of sodium chloride the growth of torularhodin in strains Cystofilobasidium macerans a Rhodosporidium toruloides was significant. Sodium chloride was also a suitable stress factor for lycopene formation in Rhodotorula mucilaginosa. The most meaningful stress factor of algae was cobalt(II) sulfate which increased metabolite production in Scenedesmus obliquus. Cyanobacteria Anabaena torulosa also attained a significant production in the presence of sodium chloride.
Production of beta-glucans by some yeasts and algae
Veselá, Markéta ; Kočí, Radka (referee) ; Márová, Ivana (advisor)
Several yeast strains and microalgae were selected for this diploma thesis. -glucans, lipids, carotenoids, ergosterol and coenzyme Q were determined in selected producers, and the cultivation conditions for yeast strains were optimized to gain enhanced production of -glucans. Microalgae cultivations were carried out according to the instructions of the Collection of Autotrophic organisms (CCALA). Selected microalge strains include Desmodesmus acutus, Dunaliella salina, Arthrospira maxima and Cyanothece sp. Selected yeast species include Rhodotorula glutinis, Cystofilobasidium macerans and Sporidiobolus metaroseus. Edible yeast Saccharomyces cerevisiae was cultivated to compare with other yeast strains because of it's verified production of -glucans. -glucans were then determined by the enzymatic kit K-YBGL Megazyme, carotenoids, ergosterol and coenzyme Q were analyzed by HPLC/PDA and fatty acids were analyzed by GC/FID. The best producer of yeast -glucans was R. glutinis and S. metaroseus, and the best conditions for the production of -glucans and other metabolites was the C/N ratio of 70. Within the microalgae species, only -glucan production was observed, the best producer was D. acutus.
Preparation of organic fibers with the addition of algae extracts
Tuhrinská, Terézia ; Skoumalová, Petra (referee) ; Němcová, Andrea (advisor)
The presented bachelor thesis is focused on the preparation and characterization of organic fibers with an admixture of pre-prepared extracts of microalgae and cyanobacteria containing valuable active compounds. The theoretical part describes selected metabolites of microalgae and cyanobacteria, methods of their analysis, the issue of encapsulation and incorporation of active substances into nanofibers and presents some methods of their preparation. In the experimental part of this thesis, selected strains from the CCALA collection were first cultured. Subsequently, aqueous, ethanol and hexane extracts of biomass from cultured and commercial microalgae and cyanobacteria were prepared. The prepared extracts were spectrophotometrically evaluated in terms of the concentration of chlorophylls, carotenoids, antioxidants, polyphenols, and total proteins present. In addition, 96 % ethanol extracts were subjected to more accurate analysis of chlorophylls and carotenoids by HPLC. The highest antioxidant activity was observed for aqueous extracts. Gelatin nanofibers containing selected extracts were formed by electrospinning method. The formed fibers were examined afterwards to identify a mass fraction of incorporated microalgal and cyanobacterial substances. The fibers were further tested for antioxidant activity with the TEAC assay. The most pronounced antioxidant effect was detected for the fiber with incorporated aqueous extract of the cyanobacterium Arthrospira maxima. Finally, the fibers were tested for their safety in contact with human cells. The amount of fibers used did not show any cytotoxic effect on human keratinocytes and the tested materials can thus be considered safe for application in cosmetics.
Photobioreactor aeration optimization using image analysis
Hruška, Kryštof ; Létal, Tomáš (referee) ; Naď, Martin (advisor)
This diploma thesis summarizes the knowledge about microalgae, their use, cultivation methods and obstacles that prevent their wider use. In the practical part of the work, a device was designed, constructed, and programmed. This device can analyze the bubbles of the tubular photobioreactor and, based on the obtained data, control its aeration. The Python programming language was used to create the program and the OpenCV library was used to analyze the photographs. The bubble detection is based on the edge detection and the subsequent refinement. The data obtained from the analysis are displayed on the device screen and the data are also stored in a csv file. The discussion lists possible improvements and lessons learned during the creation of this device.
Influence of deposits on algae growth in a tubular photobioreactor
Vajaýová, Veronika ; Lošák, Pavel (referee) ; Naď, Martin (advisor)
The content of the theoretical part of this bachelor thesis is a description of the tubular pho-tobioreactors, comparison of the individual types of the cultivation devices, the fundamental parameters influencing the efficiency of biomass production, and problems of formation of deposits on the inner surface of the photobioreactor. The attention is focused on the effect of sediment formation on the growth of microalgae in the tubular photobioreactor. Since the sediments affect the resulting light intensity in the suspension in the tubes, this phenomenon is reflected in the overall cultivation efficiency and the biomass yield. The practical part presents the course of measurements performed in the vertical tubular photobioreactor designed for flue gas cleaning using the microalgae Chlorella pyrenoidos Chick (IPPAS C2). The aim was to solve the problem of foaming, which subsequently caused deposits in the system's tubes or other parts. To this end, two measures were tested: • the mechanical one in the form of a wire mesh, • the chemical one using sunflower oil. The measured values were the basis for determining the effect of deposits on light intensity and also served to evaluate the functionality of the tested measures.
Influence of stress and nutritional conditions on carotenogenic yeast and microalgal metabolism
Sikorová, Pavlína ; Byrtusová, Dana (referee) ; Szotkowski, Martin (advisor)
This bachelor thesis describes the infuence of biological stress (co-cultivations) on the growth and metabolism of selected carotenogenic yeasts and microalgae. The metabolites of these microorganisms are chlorophyll and carotenoids, which are natural pigments and antioxidants. In theory, co-cultivation is a cultivation where microorganisms mutually support each other in the growth and production of metabolites. This would cause the increased production of previously mentioned chlorophyll and carotenoids. The theoretical part of the work is focused on the description of selected species of yeasts and microalgae and further discusses in more detail, the topics of stress factors depending on the growth and metabolism of microorganisms. The experimental part then deals with different types of cultivation and cocultivation and tries to optimize the production media and find the best symbiotic yeasts and microalgae. Furthemore the issue of different ratios of microorganisms in co-cultivations is also addressed here. The cultivated yeasts strains were Rhodotorula kratochvilovae, Rhodosporidium toruloides and Phaffia rhodozyma. And microalgae strains were Desmodesmus acutus, Desmodesmus quadricauda, Coccomyxa sp., Chlorella sorokiniana, Chlamydomonas reinhardtii and Scenedesmus obliquus. Cultivated cyanobacterium was Synechoccocus nidulans. The most successful co-cultivation experiment was the one with R. kratochvilovae and yeast Desm. quadricauda. This experiment was very succesful in all aspects.
Production of pigments and lipid substances by microorganisms on waste substrates of the food industry
Hladká, Dagmar ; Němcová, Andrea (referee) ; Szotkowski, Martin (advisor)
The presented study is focused on production of carotenoids, lipids and other substances by carotenogenic yeasts and autotrophic algae. Studied strains were cultivated in media with different composition, including waste substrates from food industry. Studied strains were cultivated under stress conditions to enhance the production of desired metabolites. The theoretical part deals with the information about yeasts and algae, with the information about monitored metabolites such as lipids, carotenoids, ergosterol, ubichinon or chlorophyll. Furthermore, the theoretical part deals with possible methods of metabolite analysis. The experimental part deals with the description of cultivation of yeats and algae. Also experimental part is focused on the description of individual methods. The result part deals with comparition of production of biomass, metabolits and lipids. The selected strains of yeast were Sporidiobolus pararoseus, Sporidiobolus metaroseus, Sporobolomyces roceus, Phaffia rhodozyma and Dioszegia hungarica. The selected strains of algae were Desmodesmus acutus, Desmodesmus quadricauda, Scenedesmus dimorphus and Chlamydomonas reinhardtii. We were optimized conditions for metabolites and lipids production. Optimal medium, which contained coffee hydrolyzate was with carbon to nitrogen ratio C/N 25. Nitrogen in higher concentration had negative effect on production of lipids. The most suitable strain for effective use of nitrogen in different concentrations was Chlamydomonas reinhardtii. The most suitable strain of yeast for effective use of coffee hydrolyzate was Sporidiobolus metaroseus.
CO2 reduction with algae
Naider, Jakub ; Rebej, Miroslav (referee) ; Vondál, Jiří (advisor)
The aim of this final thesis is the process of algae cultivation their use for carbon dioxid reduction. The main objective of this work is the mass and heat balance of the photobioreactor and the design of a temperature control system. Within the research work, an overview of certain types of bioreactors and photobioreactors, the current situation around the climate and the impact of the cultivation of algae on carbon dioxide emissions. The model for temperature control and mass transfer of a plate photobioreactor is created in this work.
Issues of the algae Chlorella production in flow bioreactors
Jankovičová, Kristína ; Lukavský,, Jaromír (referee) ; Svěrák, Tomáš (advisor)
Microalgae invite the attention of scientists due to their unique properties, including their quick growth, accumulation of lipids and other valuable substances, fixation of carbon dioxide and treatment of wastewater. This master´s thesis is focused on the study of microalgae. The main goal is to understand and describe the process of microalgae cultivation, in order to optimize it. The theoretical part of this thesis deals with microalgae (mainly Chlorella sp.) characterization, its practical use and cultivation optimization in order to obtain the highest concentration of biomass. The experimental part is divided into three tasks. Aim of the first task was the comparison of the course of autotrophic and heterotrophic cultivation of various strains of Chlorella and Coccomyxa microalgae, using three different cultivation media – synthetic medium for chlorella cultivation and natural fertilizer, Florium, used in two different concentrations (diluted 50 and 20 times). The highest Chlorella sp. biomass concentration of 7,10 g/l was achieved in the synthetic heterotrophic medium. Second task was focused on monitoring of the growth of algae Coccomyxa and Chlorella strain C1A, with respect to temperature and light intensity, using various combinations of these two important growth factors. Chlorella achieved its highest concentration of 11,46 g/l when grown at temperature of 33,5 °C and light intensity of 320 µE.m2.s1. The third and final task was to observe the growth of Dictiosphaerium chlerelloides microalgae on a flat cascade bioreactor. The experiment led to the discovery that these algae were able to grow at temperatures of around 10 °C, at which many well-known commercial algae, such as Chlorella sp. or Arthrospina sp., simply wouldn’t grow.
Preparation of microbial, plant and algal extracts to use in cosmetics for infants
Janderová, Šárka ; Dzurická, Lucia (referee) ; Márová, Ivana (advisor)
This bachelor thesis deals with the preparation of a cosmetic product for infants with the addition of active substances from cyanobacteria, microalgae, or plants. In the theoretical part, a review was made, which not only summarizes the basic information about these organisms, but also the antioxidants contained in these microorganisms. In the practical part, several types of extracts from cyanobacteria, algae and plants were prepared and characterized. The content of phenolic substances, chlorophylls and content of carotenoids were measured spectrophotometrically. Content of soluble proteins was determined by Hartree-Lowry method and the fatty acid profile in biomass was obtained by GC. Furthermore, the SPF factor was measured using the spectrophotometric method the Mansur equation. Antioxidant activity was determined by using the TEAC method. Finally, two of the best extracts were selected for the preparation of cosmetic emulsions. The sensory analysis of prepared emulsions was performed for the period of two weeks.

National Repository of Grey Literature : 95 records found   previous11 - 20nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.