National Repository of Grey Literature 5 records found  Search took 0.01 seconds. 
Regulation of STING function during murine polyomavirus infection
Šnejdarová, Aneta ; Horníková, Lenka (advisor) ; Pimková Polidarová, Markéta (referee)
Stimulator of Interferon Genes (STING) is the adapter protein of an innate immunity signalling pathway, involved in detection of double-stranded DNA (dsDNA) in the cell cytoplasm, which leads to the expression of pro-inflammatory genes, including the production of type I interferon. Eventhough during the infection with a dsDNA virus, murine polyomavirus (MPyV), the STING protein is activated, the resulting interferon production is moderate. Therefore, it can be assumed that the function of the STING protein is regulated in MPyV-infected cells. The aim of this thesis was to investigate three mechanisms by which the regulation can occur, namely through protein interaction partners, post- translational modifications, or changes in the subcellular localization of the STING protein. A cell-line of mouse fibroblasts stably expressing the STING protein fused with the HA-tag was established to facilitate the research. Furthermore, two plasmids were prepared, that encode the STING protein fused with the green fluorescent protein, facilitating the monitoring of the localization of the protein in the cell, or with a composite tag containing an in vivo biotinylated BioEaseTM -tag enabling effective isolation of the STING protein. The results of colocalization observations and coimmunoprecipitation suggest that...
Study of exosomes in polyomavirus infection
Hyka, Lukáš ; Šroller, Vojtěch (advisor) ; Saláková, Martina (referee)
Exosomes are extracellular vesicles of endosomal origin. It was thought, that exosomes are used by cells only as carriers for cellular waste, but it was found out, that exosomes serve in the cellular communication and have a role in viral infections. Exosomes are exploited by viruses for example for the transport of viral protein or viral RNA/DNA. One of the viruses, where the mechanism of exploitation is unknown (if any exists) is murine polyomavirus. Murine polyomavirus belongs to the family Polyomaviridae, to which other human viruses belong for example, JC virus or virus of Merkel cell carcinoma. Murine polyomavirus codes for small, large and middle T antigen and three capsid proteins. Middle T antigen is known to bind to cellular membranes. Exosomes are membrane derived structures, so we investigated a possible transfer of middle T antigen. To this goal the successful isolation of exosomes and their characterization was necessary. Exosomes were isolated by ultracentrifugation and further purified by the density gradient OptiPrep. Exosomes were characterized by electron microscopy, NanoSight and by protein exosomal markers. These markers are for example Alix and flotillin-1. The cells were transfected in order to produce middle T antigen. It was shown, that exosomes isolated from these cells...
Chemically modified Murine Polyomavirus-like particles and their interaction with Prostate-Specific Membrane Antigen (PSMA)
Blažková, Kristýna ; Konvalinka, Jan (advisor) ; Horníková, Lenka (referee)
Prostate cancer is one of the most abundant types of cancer among men and the demand for a specific treatment is very high. In this thesis, I have focused on using Glutamate Carboxypepti- dase II (GCPII), as a target for a proof-of-principle delivery system. GCPII is a transmembrane protein that internalizes after a binding of a ligand and is overexpressed in prostate cancer. Virus-like particles from Murine polyomavirus (VLPs) are a suitable nanocarrier for the delivery of imaging agents and drugs. Here I describe modifying these VLPs with inhibitors of GCPII and fluorescent dyes and characterize their binding to GCPII on surface plasmon resonance and to cells expressing GCPII on confocal microscopy. VLPs carrying a GCPII inhibitor show specific binding to GCPII on surface plasmon reso- nance, however they bind non-specifically to cells that don't express GCPII. Several approaches have been tried to avoid that. The substitution of BC loop on the exterior surface of VLPs that is partially responsible for the binding of sialic acid did not seem to affect specificity on cells. Another approach tested was coating of the wild-type VLPs with large polymer carrying a flu- orescent label and a GCPII inhibitor. After the conjugation of the polymer to the VLP, specific binding and internalization in GCPII-positive...
Studies of properties of the minor structural proteins of the Murine polyomavirus
Bílková, Eva ; Forstová, Jitka (advisor) ; Němečková, Šárka (referee)
Murine polyomavirus (MPyV) is a member of the Polyomaviridae family. Its capsid is composed of the major capsid protein, VP1, and the minor proteins, VP2 and VP3. The minor capsid proteins probably assure delivery of the viral genome through the endoplasmic reticulum membrane to the nucleus during early phase of infection. However, precise mechanism is not known. Expression plasmids encoding mutated VP2 or VP3 fused with EGFP have been constructed to study the interaction of VP2 and VP3 with membranes. The mutated proteins have deletions in the predicted hydrophobic domains. In this thesis, cell localisation of mutated proteins was followed. The study revealed that the hydrophobic domain 2 is the most important for association of VP2 and VP3 with membranes, while domains 1 and 3 are rather expendable. Further, nature of VP2 and VP3 isoforms has been studied. Isoforms with different electrophoretic mobility were separated on SDS-PAGE. Consequent mass spectrometry analysis showed that they differ in deamidation of asparagine, present at both minor proteins (position 253 of VP2 and 137 of VP3). Previously, acetylation of VP3 N-terminal alanine has been identified. To elucidate the function of these modifications, mutated viruses were constructed with substitution of these amino acids. Pilot...
Development of the experimental system based on Cre/loxP recombination for polyomavirus mutant production.
Hron, Tomáš ; Španielová, Hana (advisor) ; Šroller, Vojtěch (referee)
Murine polyomavirus is an important member of Polyomaviridae family offering potential applications in gene therapy and immunotherapy. Viral mutant analysis is crucial for study of the virus, however, commonly used methods of its production are laborious and give low yields. This thesis involves development of the new experimental system that can produce intact viral genome from recombinant plasmid in vivo using Cre/loxP-mediated recombination. One loxP site is unavoidably introduced into newly generated viral genome during recombination. Two variants of production plasmids generating wild type viral genome with incorporation of loxP between the poly(A) signal sites of early and late genes or into the intronic region of early genes were prepared. LoxP insertion between the poly(A) signal sites has a dramatic effect on viral gene expression and leads to complete loss of virus infectivity. Conversely, the infectious virus was obtained from the viral genome containing loxP site in the early intronic region. To ensure expression of Cre recombinase I also prepared stably transfected cell lines which can simplify the virus production. This thesis shows that newly designed system gives satisfactory yield of the virus, solves restrictions connected with commonly used methods and can be used for low infectious viral...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.