National Repository of Grey Literature 85 records found  beginprevious47 - 56nextend  jump to record: Search took 0.00 seconds. 
Effect of promoter sequence on utilization of NAD+ as a substrate for transcription initiation by RNA polymerase
Pinkas, Daniel ; Krásný, Libor (advisor) ; Fišer, Radovan (referee)
For a long time, 5' cap has been thought to be privilege only for eukaryotic organisms in form of 7-methylguanosine cap at the end of mRNA. This was changed only a few years ago. By using methods liquid chromatography and mass spectrometry a new molecule associated with RNA of Escherichia coli has been found. This molecule turned out to be nicotinamide adenine dinucleotide (NAD+ ) attached to 5' end of some small regulatory RNAs (sRNA). Later it has been shown, that RNA polymerase can attach NAD+ at 5' of RNA ab initio, meaning that RNA polymerase can utilize NAD+ as a substrate for transcription initiation. To some extent substrate for transcription initiation is chosen based on promoter sequence. Crucial requirement is presence of adenine at +1 position of DNA coding strand. This thesis focuses on promoter sequence requirements for transcription initiation with NAD+ . As a template for transcription four promoters with different modifications and their chimeras are used: RNA1, Pveg, lac UV5 and rrnB P1. Also, I tried to compare RNA polymerase from E. coli and B. subtilis in terms of transcription initiation substrate usage. Lastly, I describe here isolation of NudC, enzyme that cleaves NAD+ to nicotinamide mononucleotide (NMN) and adenosine monophosphate (AMP). NudC will be used for upcoming...
Regulation of translation iniitiation in yeast saccharomyces cerevisiae
Mašek, Tomáš ; Pospíšek, Martin (advisor) ; Krásný, Libor (referee) ; Hašek, Jiří (referee)
IV. Shrnutí výsledků 63 64 Denaturační RNA elektroforéza v TAE agarózových gelech 60% koncentrace formamidu postačuje k dostatečné denaturaci RNA pro elektroforetickou separaci. Denaturační RNA elektroforéza v TAE pufru vykazuje stejné separační rozlišení RNA molekul jako nejčastěji používaná RNA elektroforéza v MOPSovém pufru a navíc je rychlejší. Denaturační RNA elektroforéza v TAE pufru je použitelná nejen k separaci čisté směsi RNA molekul, ale i směsných vzorků obsahujících také DNA a proteiny (např. buněčných lyzátů). Denaturační RNA elektroforézu v TAE pufru lze kombinovat s kapilárním přenosem a následnou hybridizací (pro blotování lze použít jak konveční 10xSSC pufr, tak levnější 8 mM NaOH). Tento elektroforetický protokol poskytuje levnější a rychlejší alternativu k RNA elektroforéze v MOPSovém pufru, snižuje expozici laboratorních pracovníků toxickým látkám a je vhodný i pro laboratoře, které s RNA běžně nepracují. Rck2 se zapojuje do reprogramování ribozómů během oxidativního stresu Oxidativní stres inhibuje translaci stejnou měrou jako stres osmotický. Lze pozorovat pokles množství aktivně translatujících ribozómů. Tento pokles je proporcionální ke zvětšení ploch 40S, 60S a 80S "vrcholů" v polyzomálním profilu. Aplikace t-BOOH vede k vyšší disociaci polyzomálních komplexů u rck2Δ...
Molecular principles of translation reinitiation in mammals
Hronová, Vladislava ; Valášek, Leoš (advisor) ; Krásný, Libor (referee) ; Staněk, David (referee)
Translation initiation is a multistep process resulting in the formation of the elongation-competent 80S ribosome at the AUG start codon of the mRNA to be translated into a polypeptide chain. This process is orchestrated by numerous proteins called eukaryotic initiation factors (eIFs), out of which the most multitasking one is the eukaryotic initiation factor 3 (eIF3). The main focus of our laboratory aims at the complex characterization of the multisubunit protein eIF3 and the mechanisms of its contribution to various steps of translation initiation. Besides this, we also study one of the gene-specific translational control mechanisms called reinitiation which was, at least in yeast, also shown to be promoted by eIF3. Here I show that the N-terminal domain (NTD) of the largest subunit of yeast eIF3, a/Tif32, plays an important role not only in anchoring the eIF3 complex to the 40S small ribosomal subunit but it also critically contributes to mRNA recruitment to the 43S preinitiation complexes in vivo. The mRNA stabilization role of the a/Tif32-NTD at the mRNA exit channel of the 40S subunit was further confirmed in our following study by biophysical experiments. There, using in vivo approaches, we also demonstrated that mRNAs with longer 5'UTRs are more dependent on the stabilization role of the...
Gene regulation in four dimensions
Vaňková Hausnerová, Viola ; Lanctôt, Christian (advisor) ; Převorovský, Martin (referee) ; Krásný, Libor (referee)
Transcription has turned out to be a discontinuous process when imaged at a single cell level. This observation is referred to as transcriptional bursting or pulsing and has been detected in a variety of organisms ranging from bacteria to mammalian cells. The dynamics of transcriptional pulsing are influenced by the properties intrinsic to the transcriptional process, as well as by upstream factors: chromatin environment, signalling molecules, cell cycle stage etc. In the first part of this thesis, we focused on the regulation of transcriptional pulsing in the nucleolus. Using imaging of living cells, we detected pulsatile transcription of a transgene with nucleolar localization whose expression was mediated by RNA polymerase II. In the second part of the thesis, we investigated the relationship between chromatin decondensation and transcriptional dynamics. We used hyperosmotic medium to induce global condensation of chromatin and revealed that upon chromatin decondensation, a transient spike in transcriptional intensity occurs in induvial living cells. Next, we analysed expression of TFRC and POLR2A genes in several cell cycle stages using single molecule RNA FISH. We detected increase in both frequency and size of transcriptional pulses during a limited time window which coincided with chromatin...
The role of pre-mRNA splicing in human hereditary diseases
Malinová, Anna ; Staněk, David (advisor) ; Vanáčová, Štěpánka (referee) ; Krásný, Libor (referee)
U5 small ribonucleoprotein particle (U5 snRNP) is a crucial component of the spliceosome, the complex responsible for pre-mRNA splicing. Despite the importance of U5 snRNP, not much is known about its biogenesis. When we depleted one of the core U5 components, protein PRPF8, the other U5-specific proteins do not associate with U5 snRNA and the incomplete U5 was accumulated in nuclear structures known as Cajal bodies. To further clarify the role of PRPF8 in U5 snRNP assembly, we studied PRPF8 mutations that cause an autosomal dominant retinal disorder, retinitis pigmentosa (RP). We prepared eight different PRPF8 variants carrying RP-associated mutations and expressed them stably in human cell culture. We showed that most mutations interfere with the assembly of snRNPs which consequently leads to reduced efficiency of splicing. The mutant PRPF8 together with EFTUD2 are stalled in the cytoplasm in a form of U5 snRNP assembly intermediate. Strikingly, we identified several chaperons including the HSP90/R2TP complex and ZNHIT2 as new PRPF8's interactors and potential U5 snRNP assembly factors. Our results further imply that these chaperons preferentially bind the unassembled U5 complexes and that HSP90 is required for stability of...
Domain structure and function of primary bacterial sigma factors
Kálalová, Debora ; Krásný, Libor (advisor) ; Roučová, Kristina (referee)
Transcription initiation is one of the crucial steps of gene expression. A multisubunit enzyme RNA polymerase (RNAP) transcribes the genetic information from DNA to RNA. However, RNAP itself is unable to recognize a specific promoter and initiate transcription. For this purpose, bacteria have a protein called σ factor, which binds to RNAP and together form the RNAP holoenzyme. In this thesis I describe the mechanism of bacterial transcription and the structure, function and regulation of σ factors. I focus mainly on the primary σ factors of two important model species, namely gramnegative Escherichia coli and grampositive Bacillus subtilis. I describe them in the context of alternative σ factors, and I point out their differences in structure, function and regulation. Key words: RNA polymerase, primary σ factors, transcription, bacteria, Bacillus subtilis, Escherichia coli
Metagenomic profiling of microbial consortia
Rídl, Jakub ; Pačes, Jan (advisor) ; Krásný, Libor (referee) ; Novák, Petr (referee)
Methods of molecular biology enable studies on microbial diversity based on analysis of genes encoding processes and biochemical pathways of individual microorganisms and also complete microbial consortia. For this a crucial step was elaboration of new technologies of high-throughput DNA sequencing. These methods made it possible to advance studies of diversity from analysis of genomes of model microorganisms easily cultivated in laboratories to simple communities living in extreme environments and further to complex microbial consortia. This experimental approach is based on metagenomic analyses. Important are studies on ecosystems negatively affected by human activity where microorganisms not only survive but they can convert their metabolism to degrade compounds toxic for higher organisms. An example is bacterium Achromobacter xylosoxidans A8 isolated form soils contaminated by toxic chlorobenzoates. Sequencing and analysis of Achromobacter xylosoxidans A8 genome made it possible to study genes coding for enzymes that are involved in chlorobenzoates degradation in the context of the complete genetic background. An interesting microbial biofilm - gelatinous stalactites - was discovered in an extremely acidic environment of the abandoned mine in Zlaté Hory (the Czech Republic). It is formed by a simple...
Transcription regulation by sigma factors in Bacillus subtils
Benda, Martin ; Krásný, Libor (advisor) ; Seydlová, Gabriela (referee)
RNA polymerase (RNAP) is a key enzyme in regulation of bacterial gene expression. RNAP is multi-subunit enzyme and its σ subunits (factors) are used for DNA recognition. Regulation of RNAP complexed with the major σ factor has been thoroughly studied; in contrast, mechanisms of regulation of RNAP containing alternative σ factors are much less understood. This thesis is focused mainly on the model organism Bacillus subtilis and its alternative σ factors σF , σG , σI a σK . We studied the ability of RNAP in complex with these factors to recognize promoter sequences, to initiate transcription in dependence on the concentration of the initiating nucleoside triphosphate (iNTP), and to interact with selected proteins. For σF , a promoter regulated by the concentration of iNTP was discovered; for σI , to the contrary, this mechanism was not observed. In the case of σG -dependent transcription we were not able to examine regulation by the concentration of iNTP. Nevertheless, stimulation of σG -dependent transcription by a protein called YlyA, previously described in the literature, was confirmed. This stimulation was newly identified also for σF -dependent transcription. Further, we examined possible functional interaction between HelD and σK , but this link was not confirmed. Finally, this thesis...
Regulation of expression of Ms1, a sRNA from Mycobacterium smegmatis
Páleníková, Petra ; Krásný, Libor (advisor) ; Lichá, Irena (referee)
Bacteria are exposed to various environmental conditions during their growth. They have to cope with rapid changes in temperature, lack of nutrition, etc. To survive, bacteria alter their gene expression. One type of regulation of gene expression is regulation by small RNAs (sRNAs). In bacteria, a well-studied sRNA is 6S RNA that binds to the RNA polymerase holoenzyme. However, 6S RNA has not been identified in several bacterial species. Mycobacteria are a genus that probably does not have 6S RNA. Instead, Mycobacterium smegmatis possess another sRNA - Ms1. Ms1 structurally resembles 6S RNA and indeed it was first identified as a 6S RNA structural homologue. However, Ms1 binds to RNAP devoid of any sigma factor, and, therefore, is significantly distinct from 6S RNA. This work describes regulation of expression of Ms1. DNA fragments of different length from the region upstream of the Ms1 gene were prepared. These fragments were fused to the lacZ reporter gene and their activity was tested in different growth phases and under stress. This allowed identification and characterization of the core promoter sequence and regulatory sequences that might interact with transcription factor(s). Promoter activity increased with increased length of the promoter fragment and after transition into stationary...

National Repository of Grey Literature : 85 records found   beginprevious47 - 56nextend  jump to record:
See also: similar author names
2 KRÁSNÝ, Lukáš
Interested in being notified about new results for this query?
Subscribe to the RSS feed.