No exact match found for Hrabina, M.,, using Hrabina M instead...
National Repository of Grey Literature 6 records found  Search took 0.02 seconds. 
Multiband fiber polygon for accurate time and coherent frequency transmission
Havliš, O. ; Vojtěch, J. ; Šlapák, M. ; Číp, Ondřej ; Čížek, Martin ; Hrabina, Jan ; Pravdová, Lenka ; Slodička, L.
The CESNET association, in cooperation with the Institute of Scientific Instruments of the Academy of Sciences of the Czech Republic (Institute of Scientific Instruments of the CAS, abbreviated ISI CAS), ČD Telematika and University Palacký in Olomouc (UPOL) Department of Optics built a multiband polygon on real optical routes . The multiband polygon is designed for two-way transmission of ultra-stable quantities, i.e. transmission of acurrate time and coherent frequency (T/F).
Fragmentation-free ultrastable transfers through shared optical fibers
Vojtěch, J. ; Smotlacha, V. ; Havliš, O. ; Šlapák, M. ; Altmannová, L. ; Kundrát, J. ; Vohnout, R. ; Velc, R. ; Čížek, Martin ; Hrabina, Jan ; Řeřucha, Šimon ; Pravdová, Lenka ; Lazar, Josef ; Číp, Ondřej ; Kuna, Alexander ; Roztočil, J.
Fibre optics transfers of precise time and ultra-stable optical frequency are gradually becoming part of portfolio of network services of research and educational networks. These national infrastructures very often share fibres with regular data transmission, because of significant share of fibre cost rental on the Total Cost of Ownership (TCO). Situation is very similar in the Czech Republic, where there was more than 3000 km of ultra-stable transmissions within Czech e-Infrastructure, which itself runs over about 5800 km of dark fibre lines.
Acoustical detection of gunshots in the open
Hrabina, M.,
This paper descibes development of reliable gunshot detection system without need of localization, with emphasis on low power consumption for use in counter-poacher devices primarily protecting elephants in Africa. Intended system will work as a binary detector of gunfire without further classification of used fire-am. Dominance of right gunshot detection over false alarm is crucial. Recognition systém is based on LPC coefficients, correlation against template and comparison of spectal energy in sub-bands.
Nanopositioning with detection of a standing wave
Holá, M. ; Hrabina, J. ; Číp, O. ; Fejfar, Antonín ; Stuchlík, Jiří ; Kočka, Jan ; Oulehla, J. ; Lazar, J.
A measuring technique is intended for displacement and position sensing over a limited range with detection of standing-wave pattern inside of a passive Fabry-Perot cavity. In this concept we consider locking of the laser optical frequency and the length of the Fabry-Perot cavity in resonance. Fixing the length of the cavity to e.g. a highly stable mechanical reference allows stabilizing wavelength of the laser in air and thus to eliminate especially the faster fluctuations of refractive index of air due to air flow and inhomogeneity. Detection of the interference maxima and minima within the Fabry-Perot cavity along the beam axis has been tested and proven with a low loss transparent photodetector with very low reflectivity. The transparent photodetector is based on a thin polycrystalline silicon layer. Reduction of losses was achieved thanks to a design as an optimized set of interference layers acting as an antireflection coating. The principle is demonstrated on an experimental setup.
Interferometric System for Coordinate Measurement
Lazar, Josef ; Holá, Miroslava ; Hrabina, Jan ; Oulehla, Jindřich ; Číp, Ondřej ; Vychodil, M. ; Sedlář, P. ; Provazník, M.
We present interferometric system based on a frequency stabilised Nd:YAG laser. The detection of absorption lines uses techniques of the linear absorption with slow sweeping across detected absorption.
Advanced Laser Measuring Systems in Nanometrology
Lazar, Josef ; Hrabina, Jan ; Holá, Miroslava ; Vychodil, M.
We present a development of a nanometrology system combining local probe microscopy and precise positioning and measuring in the nanoscale. The positioning operates in short range with a focus on precision; displacement measurement controls the sample stage in six degrees of freedom with high-resolution interferometry. The system is designed to operate as a national standard for nanometrology. The contribution presents collaborative work with Meopta company.

See also: similar author names
12 Hrabina, Martin
2 Hrabina, Martina
Interested in being notified about new results for this query?
Subscribe to the RSS feed.