National Repository of Grey Literature 68 records found  beginprevious59 - 68  jump to record: Search took 0.00 seconds. 
Testing specimens for SEM
Kolařík, Vladimír ; Matějka, Milan ; Urbánek, Michal ; Krátký, Stanislav ; Chlumská, Jana ; Horáček, Miroslav ; Král, Stanislav
Research and development in the field of relief testing structures on Silicon wafer. The specimen is to be used for testing of metrics (dimensions and orthogonality) of scanning electron microscopes (SEM) as well as for the calibration of the SEM view of field. A set of samples is prepared on a Silicon wafer by means of electron-beam lithography and related techniques. The specimens are individually finalized. Related research and development in the field of accuracy assessment and control as well as tolerance measurements in the micron domain; Calibration Certificate.
SMV-2013-01: Relief structures based on diffractive optics
Horáček, Miroslav ; Kolařík, Vladimír ; Matějka, Milan ; Urbánek, Michal ; Krátký, Stanislav ; Chlumská, Jana ; Král, Stanislav
Research and development in the field of physical realization of graphic and optical structures based on the principle of diffractive optics by means of electron beam lithography in a recording material supported by a silicon or glass board. The research covers the analysis of the graphical or optical motive, research and application of relief structures implementing the required graphic and optical properties, research and modeling of the physical possibilities of implementation of relief structures, preparation and analysis of technology of implementation of relief structures with regard to the limits of current scientific instruments, verification of theoretical considerations by means of relief structure sample exposure.
Structural Color of Metallic Surfaces
Kolařík, Vladimír ; Horáček, Miroslav ; Urbánek, Michal ; Matějka, Milan ; Krátký, Stanislav ; Chlumská, Jana ; Bok, Jan
Nano structuring of metallic surfaces shows surface colors unusual for a given material. This study presents an overview of possible approaches to achieve desirable color changes. The nano structured relief structures prepared by means of electron beam lithography process are presented. Optical design and simulation of optical properties, data preparation for e-beam patterning, parameters of the writing process, and technological issues are presented in detail. Finally, real examples of structures that exhibit surface color changes are presented and discussed.
Some Other Gratings: Benchmarks for Large-Area E-Beam Nanopatterning
Meluzín, Petr ; Horáček, Miroslav ; Urbánek, Michal ; Bok, Jan ; Krátký, Stanislav ; Matějka, Milan ; Chlumská, Jana ; Kolařík, Vladimír
E-beam lithography is a flexible technology for diffraction gratings origination. Nevertheless, requirements of the high optical quality of large area diffractive structures imply various severe challenges to e-beam delineating processes. This paper summarizes the e-beam process parameters that influence the quality of large area grating structures. Next, we propose some new methods to prepare diffraction gratings that were found to be useful for testing and benchmarking purposes. Those methods include single line gratings, labyrinth structures, fractional structures, tiling patterns, quasi regular filling structures and forked line structures. Various samples were prepared with the standard and newly developed e-beam patterning processes using both e-beam writers available: one with the Gaussian beam at 100 keV and another one with the shaped beam at 15 keV. Some of the results are presented further in this paper, their variants and parameters are discussed as well as their usefulness as benchmarking e-beam patterns for large area optical structures, elements and devices.
Exposure Time Comparison between E-beam Writer with Gaussian Beam and Variable Shaped Beam
Horáček, Miroslav ; Krátký, Stanislav ; Urbánek, Michal ; Kolařík, Vladimír ; Meluzín, Petr ; Matějka, Milan ; Chlumská, Jana
One of the main goals in e-beam lithography is to increase exposure speed to achieve higher throughput. There are basically two types of electron-beam writers, shaped beam lithography systems and Gaussian beam lithography systems. The exposure time of both e-beam writers consist in essence of beam-on time, deflection system stabilization time and stage movement time. Exposure time testing was carried out on two types of patterns. There were completely filled in areas, binary period gratings (ratio 1:1 between exposed and unexposed areas), and multileveled structures (computer generated holograms). Exposures data was prepared according to standard technology (PMMA resist, exposure dose, non-alcoholic based developer) for both systems. The result of experiment shows that variable shaped beam system has advantage in multileveled structures while the Gaussian beam system is more suitable for gratings type of pattern. It was proved that combination of both systems has its use to increase exposures throughput.
Phase photo masks produced by means of electron beam lithography and ion etching for Bragg gratings
Krátký, Stanislav ; Urbánek, Michal ; Kolařík, Vladimír ; Horáček, Miroslav ; Chlumská, Jana ; Matějka, Milan ; Šerý, Mojmír ; Mikel, Břetislav
Fiber Bragg grating is based on the local changes of refractive index in the core of the optical fiber. It has a wide application area, e.g. different types of filters in communications, and it may also be used in sensing of mechanical stresses. One can use different technologies to prepare this type of grating, e.g. the refractive index can be modified directly during production of an optical fiber. Further, the grating may be exposed point by point by a laser beam. The most effective way is an exposure through a phase mask, since a mask may be used for the production of hundreds of grids. This paper discusses different approaches for the preparation of phase masks in terms of impact on the quality of the exposed Bragg grating. The lattice phase mask is defined mainly by two parameters; period and depth.
Monte-Carlo simulation of proximity effect in e-beam lithography
Urbánek, Michal ; Kolařík, Vladimír ; Krátký, Stanislav ; Matějka, Milan ; Horáček, Miroslav ; Chlumská, Jana
E–beam lithography is the most used pattern generation technique for academic and research prototyping. During this patterning by e–beam into resist layer, several effects occur which change the resolution of intended patterns. Proximity effect is the dominant one which causes that patterning areas adjacent to the beam incidence point are exposed due to electron scattering effects in solid state. This contribution deals with Monte Carlo simulation of proximity effect for various accelerating beam voltage (15 kV, 50 kV, 100 kV), typically used in e–beam writers. Proximity effect simulation were carried out in free software Casino and commercial software MCS Control Center, where each of electron trajectory can be simulated (modeled). The radial density of absorbed energy is calculated for PMMA resist with various settings of resist thickness and substrate material. At the end, coefficients of proximity effect function were calculated for beam energy of 15 keV, 50 keV and 100 keV which is desirable for proximity effect correction.
Comparison of ultimate resolution achieved by e-beam writers with shaped beam and with Gaussian beam
Krátký, Stanislav ; Kolařík, Vladimír ; Matějka, Milan ; Urbánek, Michal ; Horáček, Miroslav ; Chlumská, Jana
This contribution deals with the comparison of two different e–beam writer systems. E–beam writer with rectangular shaped beam BS600 is the first system. This system works with electron energy of 15 keV. Vistec EBPG5000+ HR is the second system. That system uses the Gaussian beam for pattern generation and it can work with two different electrons energies of values 50 keV and 100 keV. The ultimate resolution of both systems is the main aspect of comparison. The achievable resolution was tested on patterns consisted of single lines, single dots (rectangles for e–beam writer with shaped beam) and small areas of periodic gratings. Silicon wafer was used as a substrate for resist deposition. Testing was carried out with two resists, PMMA as a standard resist for electron beam lithography, and HSQ resist as a material for ultimate resolution achievement. Process of pattern generation (exposition) is affected by the same undesirable effect (backscattering and forward scattering of electrons, proximity effect etc.). However, these effects contribute to final pattern (resolution) by various dispositions. These variations caused the different results for similar conditions (the same resist, dose, chemical developer etc.). Created patterns were measured and evaluated by using of atomic force microscope and scanning electron microscope.
Lift-Off technique using different e-beam writers
Chlumská, Jana ; Kolařík, Vladimír ; Krátký, Stanislav ; Matějka, Milan ; Urbánek, Michal ; Horáček, Miroslav
This paper deals with lift–off technique performed by the way of electron beam lithography. Lift–off is a technique mainly used for preparation of metallic patterns and unlike etching it is an additive technique using a sacrificial material – e.g. e–beam resist PMMA. In this paper we discussed technique of preparation of lift–off mask on two different e–beam writing systems. The first system was BS600 – e–beam writer with rectangular variable shaped beam working with 15keV. The second system was Vistec EBPG5000+ HR – e–beam writer with Gaussian shape beam working with 50 keV and 100 keV. The PMMA resist single layer and bi–layer was used for the lift–off mask preparation. As a material for creation of metallic pattern, magnetron sputtered chromium was used. Atomic force microscope, scanning electron microscope and contact profilometer were used to measure and evaluate the results of this process.
Microstructuring of metallic layers for sensor applications
Kolařík, Vladimír ; Krátký, Stanislav ; Urbánek, Michal ; Matějka, Milan ; Chlumská, Jana ; Horáček, Miroslav
This contribution deals with a patterning of thin metallic layers using the masking technique by electron beam lithography. It is mainly concentrated on procedures to prepare finger structure in thin Gold layer on electrically isolated Silicon wafer. Both positive and negative tone resists are used for patterning. The thin layer is structured by the wet etching or by the lift-off technique. The prepared structures are intended to be used as a conductivity sensor for a variety of sensor applications. Patterning of the thin layer is performed by the e-beam writer with shaped rectangular beam BS600 by direct writing (without the glass photo mask). Besides the main technology process based on the direct-write e-beam lithography, other auxiliary issues are also discussed such as stitching and overlay precision of the process, throughput of this approach, issues of the thin layer adhesion on the substrate, inter-operation control and measurement techniques.

National Repository of Grey Literature : 68 records found   beginprevious59 - 68  jump to record:
See also: similar author names
6 CHLUMSKÁ, Jana
2 Chlumská, Jaroslava
Interested in being notified about new results for this query?
Subscribe to the RSS feed.