Národní úložiště šedé literatury Nalezeno 43 záznamů.  začátekpředchozí34 - 43  přejít na záznam: Hledání trvalo 0.00 vteřin. 
Automatické zpracování záznamu z vozidlové kamery
Klos, Dominik ; Herout, Adam (oponent) ; Španěl, Michal (vedoucí práce)
Tato práce se zabývá automatickým zpracováním záznamu z vozidlové kamery, který je zde využit pro odhadování vzdáleností v natočené scéně. K dosažení tohoto cíle jsou využity metody pro zpracování obrazu, geometrii prostorové scény a 3D rekonstrukci, jejichž konečným výstupem je částečný model. K tomuto účelu je využit nástroj Bundler. Výsledky rekonstrukce jsou vizualizovány v aplikaci, která poté umožňuje uživateli odhadovat vzdálenost objektů od kamery nebo jejich vzdálenosti vůči sobě navzájem.
Rekonstrukce 3D scény z obrazových dat
Ambrož, Ondřej ; Řezníček, Ivo (oponent) ; Španěl, Michal (vedoucí práce)
V práci jsou popsány již existující systémy rekonstrukce scény a uvedeny teoretické základy nutné při rekonstrukci scény z obrazových dat. Je navržen systém pro rekonstrukci scény z videosekvence, který je dále implementován a hodnoceny jeho výsledky s možností další práce. Jsou využity a popsány knihovny OpenCV, ARToolKit a SIFT.
Orientace kamery v reálném čase
Župka, Jiří ; Herout, Adam (oponent) ; Beran, Vítězslav (vedoucí práce)
Tato práce se zabývá orientací kamery v reálném čase pomocí záběrů z jediné kamery. Offline metody jsou zde popsány a použity jako reference pro srovnání metod pracujících v reálném čase. Metody pracující v reálném čase MonoSlam a PTAM jsou zde popsány a porovnány. Dále jsou v práci nastíněny pokročilé postupy, na kterých je možné nadále pracovat. 
Lokalizace objektů v prostoru
Šolony, Marek ; Španěl, Michal (oponent) ; Hradiš, Michal (vedoucí práce)
V mnoha oblastech výzkumu se z důvodu relativní finanční nenáročnosti stále více využívají systémy virtuální reality (VR). Tyto systémy umožňují zobrazovat data a zkoumat virtuální světy. Složitější situace nastává tehdy, pokud chce uživatel interagovat se systémem, manipulovat s objekty ve scéně. V této práci navrhujeme optický kamerový systém pro systém VR, který umožňuje snímat pohyb  uživatele a tím zprostředkovat interakci se systémem VR. Zároveň práce popisuje možnost jeho jednodušší kalibrace pomocí korespondujících obrazů 3D bodů.
Stereoskopické řízení robota
Žižka, Pavel ; Šolony, Marek (oponent) ; Žák, Pavel (vedoucí práce)
Tato práce se zabývá rekonstrukcí 3D scény s využitím stereovize. Rozebírá metody a postupy pro automatickou detekci korespondujících bodů v obou obrazech a jejich zpětnou projekci do trojrozměrného prostoru. Navržený systém může být využit k navigaci robota ve prostředí tak, aby se dokázal vyhýbat překážkám. Druhá část dokumentu popisuje vybrané komponenty, které byly začleněny do realizovaného robota. Dále jsou diskutovány algoritmy pro hledání cesty v mapě, s důrazem na Voronoiův diagram.
Úprava obecného stereo páru obrazů do jednoduché stereo geometrie
Peloušek, Jan ; Schimmel, Jiří (oponent) ; Říha, Kamil (vedoucí práce)
Tato práce pojednává o základech epipolární geometrie, vysvětluje způsob automatické detekce korespondujících bodů, popisuje principy tvorby fundamentální matice a konečně tvorby mezilehlého pohledu. Dále jsou zde popsány některé základní funkce knihovny OpenCV od firmy Intel, které s danou problematikou souvisí, potažmo popisuje způsob počítačového zpracování stereo-páru. Součástí práce je také samostatná aplikace, vytvořená v jazyce C++, konkrétně ve vývojovém prostředí Borland C++ Builder 6.0 za pomocí knihovny OpenCV. Tato aplikace umožňuje demonstrovat některé zde uvedené pojmy. Zejména potom výpočet fundamentální matice a tvorbu mezilehlého pohledu. V souvislosti s použitím prostředí Borland C++ Builder 6.0 je zde také popsán způsob integrace OpenCV do tohoto prostředí.
Měření vzdálenosti stereoskopickým senzorem
Vavroš, Ondřej ; Hasmanda, Martin (oponent) ; Říha, Kamil (vedoucí práce)
Tato diplomová práce vás provede teoretickým postupem, který vám umožní určit vzdálenost objektu od stereoskopického senzoru. Součástí práce je popis kroků pro dosažení cíle, tzn. získání obrazu, provedení kalibrace, rektifikace. Dále vás práce provede přehledem algoritmů pro vytvoření disparitní mapy a~určením vzdálenosti objektu od senzoru. V následující části se práce věnuje implementaci těchto postupů do aplikace, jejichž cílem je měření vzdálenosti.
Detekce a korespondence významných bodů v obraze
Hasmanda, Martin ; Kohoutek, Michal (oponent) ; Říha, Kamil (vedoucí práce)
Hlavním cílem této bakalářské práce byly seznámit se základními technikami zpracování obrazu, převážně na detekci významných bodů ve snímcích jedné scény z více pohledů a stanovení vzájemné korespondence těchto bodů. Na úvod byly popsány základní principy pro pochopení počítačového vidění, jako jsou perspektivní projekce, popis modelu kamery a odvození základního vztahu pro geometrii dvou pohledů. Z detekčních metod byl představen nejznámější Harrisův detektor, který se často používá pro svou jednoduchost a SIFT detektor, který je navíc invariantní vůči změně měřítka. Harrisův detektor je popsán podrobně. V následujících kapitolách byly popsány základní principy pro nalezení korespondencí mezi významnými body. Pro tyto účely byl Podrobně popsán vztah mezi dvěma korespondujícími body ležících na dvou projekčních rovinách a jejich výpočet za pomocí matice Homografie. Přesněji byl odvozen pro jednoduchost vztah mezi kamerami se stejným středem promítání, jenž se používá např. v sestavení panoramat z více snímků. Poté byl zaveden princip epipolární geometrie a jejího matematického vyjádření v podobě fundamentální matice, s jejíž pomocí lze definovat vztah mezi dvěma nebo více projekčními rovinami a bodem v prostoru. Pro vyhledání prvotních korespondencí bylo použito technik porovnání na základě podobnosti za pomocí algoritmů SSD nebo NCC. Hlavním Algoritmem pro výpočet korespondencí byl podrobně popsaný pravděpodobnostní algoritmus RANSAC v základní podobě a dále upravený na MLESAC. Na závěr byl uveden popis jednoduché aplikace pro implementaci popsaných metod.
Měření vzdálenosti stereoskopickým senzorem
Vavroš, Ondřej ; Říha, Kamil (oponent) ; Hasmanda, Martin (vedoucí práce)
Tato diplomová práce vás provede teoretickým postupem, který vám umožní určit vzdálenost objektu od stereoskopického senzoru. Součástí práce je popis kroků pro dosažení cíle, tzn. získání obrazu, provedení kalibrace, rektifikace. Dále vás práce provede přehledem algoritmů pro vytvoření disparitní mapy a~určením vzdálenosti objektu od senzoru. V následující části se práce věnuje implementaci těchto postupů do aplikace, jejichž cílem je měření vzdálenosti.
Zpracování stereoskopické videosekvence
Hasmanda, Martin ; Šmirg, Ondřej (oponent) ; Říha, Kamil (vedoucí práce)
Hlavním cílem této diplomové práce bylo nastudovat používané metody pro pořizování stereoskopické scény za pomocí dvojice kamer a nalézt vhodná řešení pro zpracování těchto výsledných snímků pro dvoupohledové a vícepohledové autostereoskopické displeje za účelem vytvoření prostorového dojmu. Pro metodu pořízení videosekvencí byly uvedeny dvě metody a to metoda s paralelním uspořádáním kamer „Off-axis“ a metoda s protínajícími se osami kamer „Toe-in“. Pro tuto práci byla zvolena metoda s paralelním uspořádáním kamer, protože ve výsledku neprodukuje nechtěnou vertikální paralaxu. Podrobně byl v této práci popsán princip tohoto uspořádání kamer. Dále byly představeny principy používaných metod pro poskytnutí prostorového zobrazení a to od nejstarší metody anaglyf až po zobrazení na autostereoskopických displejích. Autostereoskopické displeje byly hlavní náplní práce a tak jejich principy byly popsány podrobně. Pro tvorbu společného obrazu na vícepohledových autostereoskopických displejích bylo použito generování mezilehlých pohledů. Výsledné videosekvence byly pořízeny jednak pro testování ve scéně vytvořené 3D studiem Blender, kde bylo možno nastavit soustavu kamer přesně paralelní. Potom byly uvedeny principy zpracování videa pořízeného z dvojice kamer připojených k PC za pomocí digitalizační karty a také pomocí webových kamer, kde není zaručeno přesné paralelní uspořádání. Proto se tato práce pro reálné kamery snaží dosáhnout přesného uspořádání pomocí transformace pořízených snímku na základě stereoskopické rektifikace. Stereoskopická rektifikace byla řešena za pomocí knihoven OpenCV a bylo použito dvou metod. Obě metody vycházejí z principů epipolární geometrie, která je v práci také podrobně popsána. První metoda rektifikuje obraz na základě znalosti fundamentální matice a nalezených korespondencí ve dvou obrazech scény. Proto byly v práci uvedeny metody jak tyto korespondence nalézt. Druhá metoda pracuje na základě znalosti vnitřních a vnějších parametrů kamer stereo soustavy a v práci byl uveden i postup jak se tyto parametry nalézt. Na závěr práce byly metody implementovány do aplikací.

Národní úložiště šedé literatury : Nalezeno 43 záznamů.   začátekpředchozí34 - 43  přejít na záznam:
Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.