National Repository of Grey Literature 282 records found  beginprevious272 - 281next  jump to record: Search took 0.00 seconds. 
Natural Language Correction
Náplava, Jakub ; Straka, Milan (advisor) ; Straňák, Pavel (referee)
The goal of this thesis is to explore the area of natural language correction and to design and implement neural network models for a range of tasks ranging from general grammar correction to the specific task of diacritization. The thesis opens with a description of existing approaches to natural language correction. Existing datasets are reviewed and two new datasets are introduced: a manually annotated dataset for grammatical error correction based on CzeSL (Czech as a Second Language) and an automatically created spelling correction dataset. The main part of the thesis then presents design and implementation of three models, and evaluates them on several natural language correction datasets. In comparison to existing statistical systems, the proposed models learn all knowledge from training data; therefore, they do not require an error model or a candidate generation mechanism to be manually set, neither they need any additional language information such as a part of speech tags. Our models significantly outperform existing systems on the diacritization task. Considering the spelling and basic grammar correction tasks for Czech, our models achieve the best results for two out of the three datasets. Finally, considering the general grammatical correction for English, our models achieve results which are...
Trainable image segmentation using deep learning
Dolníček, Pavel ; Přinosil, Jiří (referee) ; Burget, Radim (advisor)
This work focuses on the topic of machine learning, specifically implementation of a program for automated classification using deep learning. This work compares different trainable models of neural networks and describes practical solutions encountered during their implementation.
Deep Learning for Text Classification
Kolařík, Martin ; Harár, Pavol (referee) ; Povoda, Lukáš (advisor)
Thesis focuses on analysis of contemporary machine learning methods used for text classification based on emotion and testing several deep neural nework architectures. Outcome of this thesis is a neural network architecture, which is tuned for using with text data and which had the best result of 79,94 percent. Proposed method is language independent and it doesn’t require as precisely classified training datasets as current methods. Training and testing datasets were consisted of short amateur movie reviews in Czech and in English. Thesis contains also overview of theoretical basics for convolutional neural networks and history of neural networks and language processing Scripts were written in Python, neural networks were simulated using Keras library and Theano framework. We used CUDA for better performance.
Audio noise reduction using deep neural networks
Talár, Ondřej ; Galáž, Zoltán (referee) ; Harár, Pavol (advisor)
The thesis focuses on the use of deep recurrent neural network, architecture Long Short-Term Memory for robust denoising of audio signal. LSTM is currently very attractive due to its characteristics to remember previous weights, or edit them not only according to the used algorithms, but also by examining changes in neighboring cells. The work describes the selection of the initial dataset and used noise along with the creation of optimal test data. For creation of the training network is selected KERAS framework for Python and are explored and discussed possible candidates for viable solutions.
Automatic Machine Learning Methods for Multimedia Data Analysis
Mašek, Jan ; Chromý, Erik (referee) ; Vozňák, Miroslav (referee) ; Burget, Radim (advisor)
The quality and efficient processing of increasing amount of multimedia data is nowadays becoming increasingly needed to obtain some knowledge of this data. The thesis deals with a research, implementation, optimization and the experimental verification of automatic machine learning methods for multimedia data analysis. Created approach achieves higher accuracy in comparison with common methods, when applied on selected examples. Selected results were published in journals with impact factor [1, 2]. For these reasons special parallel computing methods were created in this work. These methods use massively parallel hardware to save electric energy and computing time and for achieving better result while solving problems. Computations which usually take days can be computed in minutes using new optimized methods. The functionality of created methods was verified on selected problems: artery detection from ultrasound images with further classifying of artery disease, the buildings detection from aerial images for obtaining geographical coordinates, the detection of materials contained in meteorite from CT images, the processing of huge databases of structured data, the classification of metallurgical materials with using laser induced breakdown spectroscopy and the automatic classification of emotions from texts.
Deep Neural Networks for Person Identification
Duban, Michal ; Herout, Adam (referee) ; Hradiš, Michal (advisor)
This master's thesis deals with design and implementation of convolutional neural networks used in person re-identification. Implemented convolutional neural networks were tested on two datasets CUHK01 a CUHK03. Results, comparable with state of the art methods were acheved on these datasets. Designed networks were implemented in Caffe framework.
Image Captioning with Recurrent Neural Networks
Kvita, Jakub ; Španěl, Michal (referee) ; Hradiš, Michal (advisor)
Tato práce se zabývá automatickým generovaním popisů obrázků s využitím několika druhů neuronových sítí. Práce je založena na článcích z MS COCO Captioning Challenge 2015 a znakových jazykových modelech, popularizovaných A. Karpathym. Navržený model je kombinací konvoluční a rekurentní neuronové sítě s architekturou kodér--dekodér. Vektor reprezentující zakódovaný obrázek je předáván jazykovému modelu jako hodnoty paměti LSTM vrstev v síti. Práce zkoumá, na jaké úrovni je model s takto jednoduchou architekturou schopen popisovat obrázky a jak si stojí v porovnání s ostatními současnými modely. Jedním ze závěrů práce je, že navržená architektura není dostatečná pro jakýkoli popis obrázků.
Methods of deep learning in image processing tasks
Polášková, Lenka ; Marcoň, Petr (referee) ; Mikulka, Jan (advisor)
The clue of learning to recognize objects using neural network lies in imitation of animal neural network's behavior. In spite the details of how brain works is not known yet, the teams consisting of scientists from various medical or technical professions are trying to search for them. Thanks to giants like Geoffrey Hinton science made a big progress in this domain. The convolutional networks which are based on animal model of optical system can be advantageously used for image segmentation and therefore they ware chosen for segmentation of tumor and edema from images of magnetic resonance. The models of artificial neural networks used in this work had achieved the 41\% of success in edema segmentation and 79\% in segmentation of tumor from brain issue.
Image classification using deep learning
Hřebíček, Zdeněk ; Přinosil, Jiří (referee) ; Mašek, Jan (advisor)
This thesis deals with image object detection and its classification into classes. Classification is provided by models of framework for deep learning BVLC/Caffe. Object detection is provided by AlpacaDB/selectivesearch and belltailjp/selective_search_py algorithms. One of results of this thesis is modification and usage of deep convolutional neural network AlexNet in BVLC/Caffe framework. This model was trained with precision 51,75% for classification into 1 000 classes. Then it was modified and trained for classification into 20 classes with precision 75.50%. Contribution of this thesis is implementation of graphical interface for object detction and their classification into classes, which is implemented as aplication based on web server in Python language. Aplication integrates object detection algorithms mentioned abowe with classification with help of BVLC/Caffe. Resulting aplication can be used for both object detection (and classification) and for fast verification of any classification model of BVLC/Caffe. This aplication was published on server GitHub under license Apache 2.0 so it can be further implemented and used.
Deep Learning for Image Recognition
Munzar, Milan ; Kolář, Martin (referee) ; Hradiš, Michal (advisor)
Neural networks are one of the state-of-the-art models for machine learning today. One may found them in autonomous robot systems, object and speech recognition, prediction and many others AI tasks. The thesis describes this model and its extension which is used in an object recognition. Then explains an application of a convolutional neural networks(CNNs) in an image recognition on Caltech101 and Cifar10 datasets. Using this exemplar application, the thesis discusses and measures efficiency of techniques used in CNNs. Results show that the convolutional networks without advanced extensions are able to reach a 80\% recognition accuracy on Cifar-10 and a 37\% accuracy on Caltech101.

National Repository of Grey Literature : 282 records found   beginprevious272 - 281next  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.