National Repository of Grey Literature 41 records found  beginprevious12 - 21nextend  jump to record: Search took 0.01 seconds. 
Cellular labelling using non-usual magnetic nanoparticles
Kikerlová, Soňa ; Kotek, Jan (advisor) ; Pavlů, Barbora (referee)
MRI (magnetic resonance imaging) belongs to an imaging technique in a clinical practice. It is the method completely non-invasive for a patient, which allows three- dimensional imaging of the body based on the detection of hydrogen atoms of water molecules in individual tissues. Intensity of signal can be further influenced by adding a suitable contrast agent. It is necessary to perform basic in vitro and in vivo experiments on a cell cultures and animal models before a new contrast agents will be introduced into the clinical practice. This is due to potential side effects on living organisms. The current boom in nanotechnology offers a variety of nanomaterials including magnetic nanoparticles for decreasing the intensity of the MRI signal. The most common and longest used contrast agents for MRI are based on superparamagnetic iron oxide nanoparticles (SPIO). In this literature review will be presented uncommon types of magnetic nanoparticles which can also be used for the magnetic resonance imaging. Key words: magnetic resonance imaging, nanoparticle, cellular imaging
Preparation and characterization of diamond-based nanocarriers for transfection of siRNA
Majer, Jan ; Cígler, Petr (advisor) ; Fišer, Radovan (referee)
Although nanodiamonds were discovered and produced tens of years ago, they have been utilized in medical and biological fields just recently, particularly in drug and gene delivery into a cell and in bioimaging methods. Nanodiamonds can be modified with specific positively charged moieties for complexation with negatively charged nucleic acids. These complexes afterwards overcome extracellular and intracellular barriers and transport the nucleic acid either into cytosol or into the nucleus. Owing to fluorescence centres nitrogen- vacancy, which can be formed in the nanodiamonds, nanodiamonds exhibit excelling optical properties, as they emit stable fluorescence without "photoblinking" or "photobleaching". This thesis reviews properties, synthesis and modifications of nanodiamonds and other selected nanoparticles and their in vitro applications. This thesis also compares their cytotoxicity and gene knockdown efficiency.
Plasma polymers in the nanostructured and nanocomposite coatings
Shelemin, Artem ; Biederman, Hynek (advisor) ; Čech, Vladimír (referee) ; Vyskočil, Jiří (referee)
Title: Plasma polymers in the nanostructured and nanocomposite coatings Author: Artem Shelemin Department / Institute: Department of the Macromolecular Physics Supervisor of the doctoral thesis: Prof. RNDr. Hynek Biederman, DrSc. Abstract: The thesis represents the main results of my research work aimed to study nanostructured and nanocomposite films of plasma polymer. A few alternative experimental approaches were developed and investigated which ranged from low pressure (gas aggregation cluster sources and glancing angle deposition) to atmospheric pressure (dielectric barrier discharge and plasma jet) plasma processing. The metal/metal oxide Ti/TiOx, AlOx and plasma polymer SiOx(CH), Nylon 6,6 nanoparticles were prepared. The analysis of morphology of deposited plasma polymer coatings was performed by AFM and SEM. The chemical composition of films was studied by XPS and FTIR. Keywords: plasma polymer, nanoparticle, thin film, nanostructures
The study of the self- and co-assembly of block copolymers and block polyelectrolytes
Raya, Rahul Kumar ; Procházka, Karel (advisor) ; Štěpánek, Petr (referee) ; Šachl, Radek (referee)
The Thesis describe my studies based on self-assembly and co-assembly of block copolymer micelles that I conducted at the Department of Physical and Macro- molecular Chemistry at the Charles University, Prague in the research group of my supervisor, Prof. Dr. Karel Procházka, DrSc. The Thesis based on my publications and consists of four parts. Here I studied the formation of polymeric nanoparticles in aqueous solutions formed by polyelectrolytes with hydrophobic backbones by a combination of several experimental methods. The achieved results enabled me to explain the structure and properties of studied self- and co-assembled nanoparticles and to outline the decisive trends of their behavior. The spontaneous formation, sol- ubility and stability of complex nanoparticles depend not only on the electrostatic attractive forces but also on the hydrophobic effects. As the enthalpy-to-entropy interplay is very complex, a number of external factors such as temperature, pH, salinity and concentration affect the assembling process and structure of formed nanoparticles. 1
Targeting of viral nanoparticles to cancer specific receptors
Žáčková Suchanová, Jiřina
The aim of this thesis is to reveal the potential of mouse polyomavirus (MPyV) based virus-like particles (VLPs) as possible nanocarriers for directed delivery of therapeutic or diagnostic compounds to specific cells or tissues. We have chosen mouse polyomavirus VLPs because they do not contain viral DNA and are considered safe for utilization in bio-applications. In our research, we used a chemical approach for retargeting of MPyV based VLPs from their natural receptor to cancer cells. The chemical modification of the capsid surface exposed lysines by an aldehyde-containing reagent enabled conjugation of VLPs to selected molecules: transferrin and inhibitor of glutamate carboxypeptidase II (GCPII). Transferrin, as a transporter of iron to metabolically active cells, targeted VLPs to numerous types of cancer cells overexpressing the transferrin receptor. On the other hand, GCPII serves as a transmembrane marker specific for prostate cancer cells and conjugation of its inhibitor to VLPs resulted in successful recognition of these cells. Electron microscopy was used for visualization of modified VLPs and flow cytometry together with confocal microscopy for investigation of cell specific interactions and VLP uptake. Furthermore, we explored the influence of serum proteins on VLPs. The abundance of...
Fast and highly sensitive laser scanner for recording photon-upconversion luminiscence from planar surfaces
Hlaváček, Antonín ; Křivánková, Jana ; Foret, František
Photon-upconversion nanoparticles (UCNPs) are lanthanide-doped nanocrystals that can be excited by nearinfrared light and emit photon-upconversion luminescence of shorter wavelengths. Advantages of UCNPs include near-infrared excitation, multiple and narrow emission bands, negligible autofluorescence and high stability, which make UCNPs ideal luminescence label for use in biological and chemical assays. These assays - e.g. upconversion-linked immunosorbent assay, western blot, lateral flow assay, gel electrophoresis, thin layer chromatography - commonly require the scanning of a planar surface with a high spatial resolution and an excellent sensitivity. The availability of commercial equipment is recently limited because of the novelty of the photon-upconversion phenomenon. Therefore, we report on the construction of photon-upconversion laser scanner. The scanner consists of a laser scanning head, which is attached to a xy-moving stage. The scanning head itself is constructed as an epiluminescence detector with excitation wavelength of 976 nm. A CCD array spectroscope is connected to the laser head and serves as a sensitive detector of photon-upconversion luminescence. The scanner possesses a spatial resolution of 200 μm, the scanning rate is up to 57 points per second and the sensitivity reaches down to single photon-upconversion nanoparticle.
Surface modification of nanoparticles for sustaining sensitivity of surface-enhanced raman spectrometric measurements in salinated environment
Týčová, Anna ; Přikryl, Jan ; Vaňhara, P. ; Klepárník, Karel ; Foret, František
Surface-enhanced Raman spectrometry (SERS) represents a powerful method for analysis of a broad spectrum of analytes ranging from inorganic ions to biomolecules of high complexity. It combines the potential\nof Raman spectrometry for a definite identification of an analyte with remarkable sensitivity achieved by the surface enhancement effect occurring on metal nanoparticles. While low ionic strength influences positively\nthe sensitivity of the SERS measurement, a higher level of inorganic salts leads to fast ruining of colloidal character, which completely devastates the effect of the surface enhancement. The common stabilization of\nnanoparticles by a layer of polymers has a negative impact on the SERS sensitivity since it shields the nanoparticle surface from the analytes. In this work, we aim at the development of the bi-ligand system of\nnanoparticles surface modification for improved stability of colloid in saline solution at sustaining the potential for sensitive SERS analyses. The proposed system relies on the binding of 3-mercaptopropionic acid and\nthiolated polyethylene glycol in a suitable ratio onto the nanoparticle surfaces. While the short chains of the acid sustain the accessibility of the surface for analytes, the polymeric structures act as a steric barrier\npreventing colloid aggregation.
Biocompatible protein cages for encapsulation and internatization of small interfering RNA
Mokrý, Michal ; Balvan, Jan (referee) ; Heger, Zbyněk (advisor)
This thesis is focused on creation of apoferritin nanocarrier with encapsulated small interfering RNA marked with fluorescent dye. Main objectives are optimization of pH and amount of siRNA encapsulated into apoferritin cavity and physicochemical characteristics of created nanocarrier. First part deals with theoretical knowledge necessary for understanding concept of this thesis. Second part describes used methods and evaluated results. Created apoferritin nanocarriers were optimal in size with great hemocompatibility, but long-term stability didn’t meet our expectations.
Targeting of viral nanoparticles to cancer specific receptors
Žáčková Suchanová, Jiřina
The aim of this thesis is to reveal the potential of mouse polyomavirus (MPyV) based virus-like particles (VLPs) as possible nanocarriers for directed delivery of therapeutic or diagnostic compounds to specific cells or tissues. We have chosen mouse polyomavirus VLPs because they do not contain viral DNA and are considered safe for utilization in bio-applications. In our research, we used a chemical approach for retargeting of MPyV based VLPs from their natural receptor to cancer cells. The chemical modification of the capsid surface exposed lysines by an aldehyde-containing reagent enabled conjugation of VLPs to selected molecules: transferrin and inhibitor of glutamate carboxypeptidase II (GCPII). Transferrin, as a transporter of iron to metabolically active cells, targeted VLPs to numerous types of cancer cells overexpressing the transferrin receptor. On the other hand, GCPII serves as a transmembrane marker specific for prostate cancer cells and conjugation of its inhibitor to VLPs resulted in successful recognition of these cells. Electron microscopy was used for visualization of modified VLPs and flow cytometry together with confocal microscopy for investigation of cell specific interactions and VLP uptake. Furthermore, we explored the influence of serum proteins on VLPs. The abundance of...
Determination of permeability of ulra-fine lead oxide aerosols through military filters
Kellnerova, E. ; Večeřa, Zbyněk ; Kellner, J. ; Zeman, T. ; Hylak, Č.
Military filters introduced in the Army of the Czech Republic are most commonly used when working with combat equipment and weapons and in manoeuvring activities in the terrain with the use of explosives or chemical warfare agents. During such activities, a large number of pollutants in the form of nanoparticles are released. Nanoparticles, irrespective of their chemical composition, are classified as carcinogenic to humans and therefore it is necessary to eliminate them from the air. Military filters, especially the combined ones, which contain a filtration as well as sorption component, are most widely used and are designed for the widest range of pollutants. However, the current methodology to evaluate the effectiveness of military filters does not fix a duty to monitor the ability of the filters to capture relevant pollutants across the whole range of sizes. The paper evaluates the efficiency of selected types of military filters using the methodology and instrumentation introduced in the accredited laboratories of the Institute of Analytical Chemistry of the Academy of Sciences of the Czech Republic. The testing has been carried out simultaneously with two concentrations of ultra-fine aerosols containing lead oxide nanoparticles ranging in size from 7.6 nm to 299.6 nm. It is an aerosol, the physicochemical and toxicological properties of which are known. During the work the basic parameters of permeability of aerosols tested by filters have been evaluated, especially: size and number of particles in front of and behind the filter, the efficiency and penetration of nanoparticles by the filter.

National Repository of Grey Literature : 41 records found   beginprevious12 - 21nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.